Synthesis and Properties of N-Phosphorylated Ribonucleosides

Takeshi Wada, Tomohisa Moriguchi, and Mitsuo Sekine*

Contribution from the Department of Life Science, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 227, Japan

Received May 2, 1994®

Abstract: A new class of phosphorylated nucleosides, i.e., adenosine 6-N-phosphoramidate (6-N-AMP) and related derivatives, were synthesized in good yields via phosphitylation of the amino group of appropriately protected adenosine derivatives. In a similar manner, cytidine 4-N-phosphoramidate (4-N-CMP), guanosine 2-N-phosphoramidate (2-N-GMP), and their diethyl ester derivatives were synthesized. These new compounds were characterized by ¹H, ¹³C, and ³¹P NMR, UV, CD, IR, electrophoresis, and mass spectroscopy. The physical and chemical properties of these N-phosphorylated ribonucleoside derivatives have been studied in detail.

Introduction

Functional groups of nucleic acids are modified in a variety of ways in living cells. Such modified species play essential roles in a series of biological reactions.1 Phosphorylation of the 5'terminal hydroxyl of DNA/RNA is catalyzed by specific enzymes such as polynucleotide phosphorylase.² The 3'-terminal aminoacylation of tRNA is one of the most prevalent enzymatic reactions in peptide synthesis.3 It is also well known that 2'hydroxyl groups of RNA are methylated.4 ribosylated.5 and phosphorylated.⁶ On the other hand, a large number of nucleosides modified at their nucleobases have been discovered from biologically important nucleic acids such as tRNA and mRNA.⁷ For example, a wide variety of 6-N-modified adenosine derivatives such as 6-N-methyladenosine,8 6-N,6-N-dimethyladenosine,8 6-N-isopentenyladenosine, 6-N-(cis-4-hydroxyisopentenyl)adenosine, ¹⁰ and 6-N-(threoninocarbonyl) adenosine (t⁶A)^{11,12} have

* Abstract published in Advance ACS Abstracts, September 15, 1994. (1) Watson, J. D.; Hopkins, N. H.; Roberts, J. W.; Steitz, J. A.; Weiner, A. M. Molecular Biology of the Gene; Benjamin/Cummings Publishing Co.
 Inc.: Menlo Park, CA, 1987; Vol. 1.
 (2) Godefrog-Colburn, T.; Gruberg-Manago, M. Enzymes 1972, 7, 533.

(3) (a) Nishimura, S. In Transfer RNA: Structure, Properties and Recognition; Schimmel, P. R., Söll, D., Abelson, J. N., Eds.; Cold Spring Harbor Laboratory: Cold Spring Habor, NY, 1979. (b) Schimmel, P. R.; Söll, D. Annu. Rev. Biochem. 1979, 48, 601.

(4) (a) Smith, J. D.; Dunn, D. B. Biochim. Biophys. Acta 1959, 31, 573. (b) Hall, R. H. Biochemistry 1964, 3, 876. (c) Lane, B. G. Biochemistry 1965, 4,212. (d) Hall, R. H. The Modified Nucleosides in Nucleic Acids; Columbia University Press: New York, 1971. (e) Perry, R. P; Kelly, D. E. Cell 1974, 1, 37. (f) Both, G. W.; Banerjee, A. K.; Shatkin, A. J. Proc. Natl. Acad. Sci. U.S.A. 1975, 72, 1189.

(5) (a) Desgress, J.; Keith, G.; Kuo, K. C.; Gehrke, C. W. Nucleic Acids Res. 1989, 17, 865. (b) Kiesewetter, S.; Ott, G.; Sprinzl, M. Nucleic Acids Res. 1990, 18, 4677. (c) Keith, G.; Glasser, A.; Desgres, J.; Kuo, K.; Keith, G.; Glasser, A.; Desgres, G.; Glasser, G.; G

G. Nucleic Acids Res. 1991, 19, 5199.

(6) (a) Konarska, M.; Filipowicz, W.; Domdey, H.; Gross, H. J. Nature 1981, 293, 112. (b) Konarska, M.; Filipowicz, W.; Domdey, H.; Gross, H. J. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 1474. (c) Greer, C. L.; Peebles, C. L.: Gegenheimer, P.: Abelson, J. Cell 1983, 32, 537. (d) Sekine, M. In Studies in Natural Product Chemistry: Rahmann, A.-U., Ed.; Elsevier: Tokyo, 1994; Vol. 14, pp 283-331.

(7) (a) McClosky, J. A.; Nishimura, S. Acc. Chem. Res. 1977, 10, 403. (b) Dunn, D. B.; Hall, R. H. Nucleic Acids. In Handbook of Biochemistry and Molecular Biology, 3rd ed.; Fasman, G., Ed.; CRC Press: Cleveland, 1975; Vol. 1, pp 65–217. (c) Sprinzl, M.;Hartmann, T.; Meissner, F.; Moll, J.; Voderwülbecke, T. Nucleic Acids Res. Sequence Suppl. 1987, 15, r53. (d) Sprinzl, M.; Hartmann, T.; Weber, J.; Blank, J.; Zeidler, R. Nucleic Acids Res. Sequence Suppl. 1989, 17, rl. (e) Sprinzl, M.; Dank, N.; Nock, S.; Schön, A. Nucleic Acids Res. 1991, 19, 2127. (f) Stern, L; Schulman, L. H. J. Biol. Chem. 1978, 253, 6132.

(8) Littlefield, J. W.; Dunn, D. B. Biochem. J. 1958, 70, 642.
(9) Biemann, K.; Tsunakawa, S.; Sonnenbrichler.; K. Feldmann, H.; Dütting, D.; Zachau, H. G. Angew. Chem. 1966, 78, 600.

(10) Hall, R. H.; Mittelman, A.; Horoszewicz, J. S.; Grace, J. T. Ann. N.Y. Acad. Sci. 1967, 143, 799.

(11) Hall, R. H. Biochemistry 1964, 3, 769.

(12) Schweizer, M. P; Chheda, G. B.; Baczynskyj, L.; Hall, R. H. Biochemistry 1969, 8, 3283.

been found. Many N-alkylated and N-acylated ribonucleosides have also been isolated as cytidine and guanosine derivatives.⁷

From the chemical point of view, the exo-amino groups of adenosine and cytidine have sufficient reactivities toward electrophiles such as acylating or phosphorylating reagents. Particularly, the cytidine base is so reactive that selective N-acylation without modification of other functional groups can be achieved. 13,14 Todd first reported the chemical N-phosphorylation of cytidine with phosphorylating reagents.¹⁵ Letsinger has recently described a new method for oligodeoxyribonucleotide synthesis via the phosphoramidite approach by use of phosphoramidite building units having unprotected nucleobases. 16,17 The free exocyclic amino groups of deoxyadenosine and deoxycytidine proved to be partially phosphitylated with activated phosphoramidite reagents. Hayakawa described a facile Oselective phosphorylation of nucleosides without N-protection.¹⁸ In connection with this study, he prepared an O-protected N-diethoxyphosphorylated deoxyadenosine derivative with the help of HPLC.

These results imply that such chemically reactive amino functions should also be possible sites for biological phosphorylation. However, there are no examples of naturally occurring N-phosphorylated nucleosides despite the sufficient chemical reactivity of nucleobases accessible to phosphorylation. Why are N-phosphorylated nucleosides not found from biological sources to date? Is it impossible to phosphorylate the amino group of adenosine, cytidine, or guanosine via an enzymatic process? In connection with these simple questions, there are several precedents of P-N bond containing natural products such as phosphocreatine,19 phosphoarginine,20 phosphoramidon,21 and dinogunellin.²² A more straightfoward P-N bond containing nucleoside analog is an N-phosphoribosylated 3'-deoxyarabinosyladenine derivative (Agrocin 84)^{23,24} which was discovered as an antibiotic responsible for the biological control of crown gall by Kerr in 1977. Kerr's discovery strongly suggests that

⁽¹³⁾ Mizuno, Y.; Itoh, T.; Tagawa, H. Ind. Chem. 1965, 1498.
(14) Sasaki, T.; Mizuno, Y. Chem. Pharm. Bull. 1967, 15, 894.

⁽¹⁵⁾ Michelson, A. M.; Todd, A. R. J. Chem. Soc. 1953, 34.

⁽¹⁶⁾ Gryaznov, S. M.; Letsinger, R. L. J. Am. Chem. Soc. 1991, 113, 5876.

⁽¹⁷⁾ Gryaznov, S. M.; Letsinger, R. L. Nucleic Acids Res. 1992, 20, 1879. (18) Uchiyama, M.; Aso, Y.; Noyori, R.; Hayakawa, Y. J. Org. Chem. 1993, 58, 373.

⁽¹⁹⁾ Cramer, F.; Vallmar, A. Chem. Ber. 1959, 92, 392-398.
(20) (a) Meyerhof, O.; Lohmanana, K. Biochem. Z. 1928, 196, 22. (b) Ennor, A. H.; Morrison, J. F.; Rosenberg, H. Biochem. J. 1956, 62, 358. (c)
Cramer, F.; Scheiffele, E.; Vollmar, A. Chem. Ber. 1962, 95, 1670.
(21) Suda, H.; Aoyagi, T.; Takeuchi, T.; Umezawa, H. J. Antibiot. 1973,

⁽²²⁾ Hatano, M.; Marumoto, R.; Hashimoto, Y. Anim., Plant, Microb.

Toxins, Proc. Int. Symp., 4th, 1974, 1976, 2, 145.
(23) Roberts, W. P.; Tate, M. E.; Kerr, A. Nature 1977, 265, 379.

⁽²⁴⁾ Tate, M. E.; Roberts, W. P.; Kerr, A. Nature 1979, 280, 697.

Scheme 1

N-phosphorylation could not be ruled out as a possible biological reaction. In Kerr's paper, he synthesized N-phosphorylated adenosine (6-N-AMP) as a reference compound and suggested that N-phosphorylated nucleosides should have phosphoryl transfer potential as putative intermediates in certain phosphorylation cycles by enzymes in living systems. However, the details of the synthesis and properties of 6-N-AMP were not described, and only its UV data were available. It is still unknown whether the N-P bond of N-phosphorylated ribonucleosides is extremely unstable in living cells so that the presence of such N-phosphorylated species cannot be detected even if they can be formed enzymatically. In general, the inherent instability of P-N bond containing phosphoramidate derivatives has been noted. 25

Here we have synthesized all three N-phosphorylated ribonucleosides involving N-phosphorylated cytidine (4-N-CMP) and guanosine (2-N-GMP) and 6-N-AMP to unveil their unknown nature. In this paper we report for the first time convenient syntheses of these N-phosphorylated ribonucleosides with high purity and also describe fully their chemical and physicochemical properties.

Results and Discussion

Synthesis of Adenosine 6-N-Phosphoramidate and Its Derivatives. Phosphorylation of a properly protected adenosine derivative with a free amino group was examined. Tris(1,2,4-triazolyl)-phosphine oxide, prepared in situ from phosphorus oxychloride and triazole in the presence of Et₃N, was allowed to react with 2',3',5'-tri-O-benzoyladenosine (1a)²⁶ (Scheme 1) for 2 h, and the mixture was treated successively with 0.5 M triethylammonium hydrogen carbonate. Unexpectedly, only one of the triazolyl groups of 2a was selectively hydrolyzed to afford relatively stable

(26) Ishido, Y.; Nakazaki, N.; Sakairi, N. J. Chem. Soc., Perkin Trans. 1 1977, 657.

triethylammonium 2',3',5'-tri-O-benzoyladenosine 6-N-[(1,2,4triazolyl)phosphoramidate (3a) which showed a characteristic ³¹P NMR resonance signal at -15.3 ppm in CDCl₃. It was noteworthy that compound 3a could be purified by silica gel column chromatography and isolated in 80% yield. When 2',3',5'tri-O-acetyladenosine (1b)²⁷ was employed as a starting material in place of 1a, the corresponding 6-N-[(1,2,4-triazolyl)phosphoramidate 3b was formed, but could not be extracted with organic solvents from aqueous solution because of its high hydrophilicity. The triazolyl group of 3a was hydrolyzed by treatment with 80% acetic acid to give 6-N-phosphoramidate derivative 4a in 89% yield (estimated by ³¹P NMR). Unfortunately, compound 4a gradually decomposed during removal of acetic acid by evaporation. Treatment of the crude mixture containing 4a with aqueous ammonia afforded the desired product of 6-N-AMP 5' (ammonium salt) in an overall yield of 47% from 3a (estimated by ³¹P NMR). When compound 3a was treated directly with aqueous ammonia, adenosine 6-N-phosphorodiamidate (6) was obtained with a purity of 83% (estimated by ³¹P NMR; 2.64 ppm, D₂O).

A more efficient route to 6-N-AMP was also explored using a highly reactive phosphoramidite, bis(2-cyanoethoxy)(N,Ndiisopropylamino) phosphine. This reagent allowed facile Nphosphitylation with 1a in the presence of 1H-tetrazole to give the 6-N-phosphitylated intermediate 7a (Scheme 2). Compound 7a was oxidized with tert-butyl hydroperoxide to give a fully protected adenosine 6-N-[bis(2-cyanoethyl) phosphoramidate] (8a). It was, however, observed that 8a was unstable and decomposed considerably during silica gel column chromatography. After screening several solvent systems for chromatography, this problem was finally overcome by addition of 0.2% acetic acid to the usual eluent CH₂Cl₂-MeOH. Thus, compound 8a could be isolated in pure form in a high yield of 94% without decomposition. This finding is of great importance since a route to a large scale synthesis of 6-N-AMP 5 is now possible. The effect of acetic acid on the stability of 8a on the surface of silica gel is not clear. Debenzoylation of 8a was performed by treatment with aqueous ammonia. Purification of 6-N-AMP 5 thus formed was done by gel filtration (Sephadex G10) followed by C18 reversed-phase column chromatography. The desired product 6-N-AMP 5 was obtained in 91% yield as a disodium salt28 and

^{(25) (}a) Letsinger, R. L.; Mungall, W. S. J. Org. Chem. 1970, 35, 3800. (b) Letsinger, R. L.; Hapke, B.; Petersen, G. R.; Dumas, L. B. Nucleic Acids Res. 1976, 3, 1043. (c) Hata, T.; Yamamoto, I.; Sekine, M. Chem. Lett. 1976, 601. (d) Bannwarth, W. Helv. Chim. Acta 1988, 71, 1517. (e) Gryaznov, S. M.; Azhaev, A. V. Bioorg. Khim. 1989, 15, 994. (f) Mag, M.; Engels, J. W. Nucleic Acids Res. 1989, 17, 5973. (g) Gryaznov, S. M.; Letsinger, R. L. Nucleic Acids Res. 1992, 20, 3403. (h) Gryaznov, S. M.; Letsinger, R. L. Tetrahedron Lett. 1992, 33, 4127. (i) Mag, M.; Schmidt, R.; Engels, J. W. Tetrahedron Lett. 1992, 33, 7319. (j) Gryaznov, S. M.; Letsinger, R. L. Tetrahedron Lett. 1993, 34, 1261. (k) Gryaznov, S. M.; Letsinger, R. L. Nucleic Acids Res. 1993, 21, 1403.

Scheme 2

Scheme 3

characterized by ¹H, ¹³C, and ³¹P NMR, UV, and CD spectroscopy, paper electrophoresis, HRMS spectrometry, and elementary analysis as will be discussed later. All data obtained showed that the purity of 6-N-AMP 5 was more than 95% (see supplementary material).

The synthesis of a phosphorothicate analog of 6-N-AMP was attempted. The 6-N-phosphitylated intermediate 7a was treated with N, N, N', N'-tetraethylthiuram disulfide (TETD)²⁹ to give the corresponding phosphorothioamidate 9a in 52% yield. However, deprotection of 9a was unsuccessful when aqueous NH₃ was employed. Since the 2-cyanoethyl group of the phosphorothioate analog 9a was more stable than that of the corresponding 8a, the unexpected P-N bond cleavage proceeded faster than β -elimination of the 2-cyanoethyl group.

Next, the synthesis of the diethyl ester 12 of 6-N-AMP was examined.³⁰ 2',3',5'-Tri-O-acetyladenosine 6-N-[bis(1,2,4-triazolyl)phosphate] (2b), in situ prepared from 1b with tris(1,2,4triazolyl)phosphine oxide, was treated with excess EtOH, and the mixture was stirred for 2 h. After purification by silica gel column chromatography, the desired diethyl ester 11b was obtained in 43% yield from 1b. When 1b was allowed to react with a mixture of diethyl phosphonate, carbon tetrachloride, and triethylamine, the phosphorylation proceeded very slowly and was completed in 2 days to give 11b in 38% yield. When diethyl phosphorochloridite was used as a phosphitylating reagent, the phosphitylation of 1b was completed within 2 h. After oxidation with tert-butyl hydroperoxide, 11b was obtained in 91% yield. The phosphorothicate derivative 13b was also obtained in 52% yield from 1b by treatment of the common intermediate 10b with elemental sulfur in CS2.

The selective removal of the acetyl groups of 11b was attempted by treatment with aqueous NH₃. However, slight degradation of the ethyl ester moiety was observed in TLC monitoring. Therefore, the phenoxyacetyl group was used in place of the acetyl group. A similar N-phosphitylation of 2',3',5'-Tris-O-(phenoxyacetyl)adenosine (1c) with diethoxy(N,N-diisopropylamino)-

(29) Vu, H.; Hirschbein, B. L. *Tetrahedron Lett.* **1991**, 32, 3005. (30) Hayakawa reported the synthesis of 3',5'-bis-O-(tert-butyldimethylsilyl)-2'-deoxyadenosine 6-N-[O,O-diethyl phosphoramidate] by use of diethyl phosphorochloridate as a phosphorylating reagent in ref 18.

phosphine followed by oxidation of the intermediate 10c with tert-butyl hydroperoxide gave 11c in 81% yield. Thus, selective deacylation of 11c could be performed under very mild conditions without decomposition of the ethyl ester moiety and afforded the diethyl ester 12 of 6-N-AMP in 63% yield.

Synthesis of Cytidine 4-N-Phosphoramidate and Its Derivatives. A two-step N-phosphorylation of 2',3',5'-tri-O-benzoylcytidine (14a) (Scheme 3), prepared by the selective N-debenzoylation of 2',3',5'-O-4-N-tetrabenzoylcytidine,31 was carried out by the use of bis(2-cyanoethoxy)(N,N-diisopropylamino)phosphine as the phosphoramidite reagent in a manner similar to that described in the case of 8a. Thus, 4-N-[bis(2-cyanoethoxy)phosphoryl]cytidine derivative 16 was synthesized in 61% yield. Deprotection of 16 with aqueous NH₃ gave cytidine 4-N-phosphoramidate 17 in 76% yield.

2',3',5'-Tris-O-(phenoxyacetyl)cytidine (14c) was preferable as a starting material for the synthesis of the diethyl ester 20 of 4-N-CMP 17. It was, however, difficult to prepare 14c by the selective N-deacylation of the corresponding peracylated derivative. Therefore, the trimethylsilyl (TMS) group was used as a transient protective group for the hydroxyl function. 32,33 Cytidine was treated with hexamethyldisilazane to give 2',3',5'-tris-O-(trimethylsilyl)cytidine (14b) quantitatively. Further one-pot reaction of 14b with diethoxy(N,N-diisopropylamino)phosphine was carried out in the presence of 1H-tetrazole in CH₃CN. It was found that the TMS ether bonds of 14b were sufficiently stable during lH-tetrazole-mediated phosphitylation. After oxidation with tert-butyl hydroperoxide, the TMS group was hydrolyzed by the addition of water to give the diethyl ester 20 of 4-N-CMP in 75% yield from cytidine.

Synthesis of Guanosine 2-N-Phosphoramidate and Its Derivatives. It is well known that the amino group of guanosine is less reactive toward acylating reagents. In contrast to this fact, the lactam moiety of guanosine is reactive with acyl chlorides,34,35

⁽²⁸⁾ Kerr reported the synthesis of 6-N-AMP in ref 2). However, only the UV spectral data of this compound were described.

⁽³¹⁾ This compound was prepared from 4-N-2',3',5'-O-tetrabenzoylcytidine by using ZnBr₂ as an N-selective debenzoylating reagent: Kierzek, R.; Ito, H.; Bhatt, R.; Itakura, K. Tetrahedron Lett. 1981, 22, 3761.

⁽³²⁾ Ti, G. S.; Gaffney, B. L.; Jones, R. A. J. Am. Chem. Soc. 1982, 104, 1316

⁽³³⁾ McLaughlin, L. W.; Piel, N.; Hellmann, T. Synthesis 1985, 322. (34) Kamimura, T.; Tsuchiya, M.; Koura, K.; Sekine, M.; Hata, T. Tetrahedron Lett. 1983, 24, 2775.

Scheme 4

Table 1. ¹H NMR Chemical Shifts (ppm) of N-Phosphorylated Ribonucleosides in D₂O

-	1'-H	2′-H	3'-H	4′-H	5'-H	5"-H	2-H	8-H	5-H	6-H
adenosine	5.99	4.74	4.38	4.25	3.87	3.78	8.14	8.26		
5'-AMP	6.04	4.77	4.46	4.35	4.01	4.01	8.12	8.55		
6-N-AMP 5	6.00	4.71	4.37	4.23	3.86	3.76	8.32	8.24		
6-N-AMP-Et (12)	6.00	4.76	4.40	4.20	3.88	3.80	8.43	8.41		
cytidine	5.84	4.25	4.15	4.08	3.88	3.76			5.99	7.79
5'-CMP	6.01	4.36	4.34	4.25	4.04	3.99			6.14	8.13
4-N-CMP 17	5.90	4.31	4.19	4.11	3.91	3,79			6.63	7.90
4-N-CMP-Et (20)	5.83	4.26	4.13	3.84	3.92	3.76			6.25	8.01
guanosine	5.86	4.69	4.36	4.19	3.84	3.76		7.95		
5'-GMP	5.93	4.76	4.50	4.33	4.02	4.02		8.20		
2-N-GMP 25	5.88	4.70	4.38	4.18	3.86	3.78		7.96		
2-N-GMP-Et (28)	5.96	4.83	4.46	4.16	3.89	3.79		8.09		

phosphorylating reagents,36,37 phosphitylating reagents,38,39 sulfonyl chlorides, ^{36,37,40,41} and silyl chlorides³⁷ to give 6-O-modified guanosine derivatives. When 2',3',5'-tri-O-acetylguanosine (21)²⁷ was treated with an equimolar amount of diethoxy (N, N)diisopropylamino) phosphine in the presence of 1H-tetrazole, no reaction was observed by TLC analysis. However, ³¹P NMR monitoring of the reaction indicated that phosphitylation occurred at the 6-O-position. 42 The 6-O-phosphitylated derivative rapidly decomposed on TLC plates, and the product could not be detected by TLC analysis. In order to protect the 6-O-position and increase the nucleophilicity of the amino group of guanosine, we converted 21 to the 6-O-TMS derivative 22 by treatment with trimethylsilyl chloride in pyridine (Scheme 4). To the resulting mixture containing 22 was added diethoxy(N,N-diisopropylamino)phosphine or bis(2-cyanoethoxy)(N,N-diisopropylamino)phosphine.⁴³ The phosphoramidite reagent was converted effectively to a more reactive phosphorus chloridite intermediate by the insitu reaction catalyzed by pyridinium hydrochloride generated in the initial reaction of 21 with trimethylsilyl chloride. In this case, Nphosphitylation proceeded smoothly to give the phosphite intermediate 23 or 26 within 1 h. Successive oxidation of 23 and 26 with tert-butyl hydroperoxide afforded the dialkyl esters 24 and

27 of 2-N-phosphorylated guanosine in 27% and 45% yields, respectively. The relatively low yields were attributed to the inherent instability of these compounds during silica gel column chromatography since TLC suggested that each reaction provided a major product to a degree of more than 80%. Treatment of the bis(2-cyanoethyl) ester 24 with aqueous NH₃ resulted in a high-yield synthesis of 2-N-GMP 25 in 99% yield. The diethyl ester 28 of 2-N-GMP was also obtained in 86% yield by the selective hydrolysis of 27.

Characterization of N-Phosphorylated Ribonucleosides. ¹H NMR. The ¹H NMR spectrum of 5 (disodium salt) in D₂O basically resembles that of adenosine. The signals of the 8-H and 2-H protons are characteristic; the 8-H signal (8.24 ppm) appears at slightly higher field than the 2-H signal (8.32 ppm). The assignment of these signals was confirmed by the observation of the strong NOE between the 8-H and 1'-H protons. The large downfield shift of the 8-H proton may be attributed to the electron-withdrawing effect of the 6-N-phosphoryl group. Further, the acidity of the 8-H proton is enhanced for the same reason. In fact, the 8-H proton underwent gradual deuterium exchange in D₂O. A similar tendency was observed for the diethyl ester derivative 12. The chemical shifts of 6-N-phosphorylated adenosine derivatives are summarized in Table 1 along with those of adenosine and 5'-AMP as reference compounds.

In the case of 4-N-phosphorylated cytidine derivatives, the chemical shifts of the sugar protons were similar to those of cytidine (Table 1). Characteristic features of the ¹H NMR spectra of 17 and 20 were the large downfield shifts of the 5-H and 6-H protons. The same effect has been cited for 4-N-acylated cytidine derivatives.⁴⁴

In contrast to the above case, 2-N-phosphorylated guanosine

⁽³⁵⁾ Bridson, P. K.; Markiewicz, W. T.; Reese, C. B. J. Chem. Soc., Chem. Commun. 1977, 791.

⁽³⁶⁾ Daskalov, H. P.; Sekine, M.; Hata, T. Tetrahedron Lett. 1980, 21, 3899

⁽³⁷⁾ Daskalov, H. P.; Sekine, M.; Hata, T. Bull. Chem. Soc. Jpn. 1981, 54, 3076.

⁽³⁸⁾ Pon, R. T.; Damha, M, J.; Ogilvie, K. K. Tetrahedron Lett. 1985, 26, 2525.

⁽³⁹⁾ Pon, R. T.; Damha, M, J.; Ogilvie, K. K. Nucleic Acids Res. 1985, 13, 6447.

⁽⁴⁰⁾ Reese, C. B.; Ubasawa, A. Tetrahedron Lett. 1980, 21, 2265.

⁽⁴¹⁾ Reese, C. B.; Skone, P. A. J. Chem Soc., Perkin Trans. 1 1984, 1263.

⁽⁴²⁾ Wada, T.; Sekine, M. Tetrahedron Lett. 1994, 35, 757.

⁽⁴³⁾ Uhlmann, E.; Engels, J. Tetrahedron Lett. 1986, 27, 1023.

⁽⁴⁴⁾ Kawai, G.; Hashizume, T.; Yasuda, M.; Miyazawa, T.; McClosky, J. A.; Yokoyama, S. Nucleosides Nucleotides 1992, 11, 759.

Table 2. ¹H-¹H Coupling Constants (Hz) of N-Phosphorylated Ribonucleosides in D2O

	1', 2'	2', 3'	3', 4'	4', 5'	4', 5"	5', 5"
adenosine	6.3	5.3	3.3	2.6	3.6	-12.9
5'-AMPa	5.9	5.0	3.6	3.2	3.2	b
6-N-AMP 5	5.9	5.0	3.6	2.6	3.3	-12.9
6-N-AMP-Et (12)	5.9	5.0	3.6	2.6	3.6	-12.9
cytidine	4.0	4.3	5.9	2.6	4.3	-12.9
5'-CMPa	4.4	4.5	4.6	2.5	2.9	-12.0
4-N-CMP 17	3.6	5.3	6.3	2.8	4.6	-12.9
4-N-CMP-Et (20)	3.6	4.6	b	b	4.0	-12.9
guanosine	5.8	5.6	4.0	3.0	4.0	-12.9
5'-GMPa	6.0	5.0	3.7	3.4	3.4	ь
2-N-GMP 25	5.3	5.6	4.3	3.0	3.3	-12.9
2-N-GMP-Et (28)	5.0	5.3	5.3	3.6	5.3	-12.5

^a See ref 49. ^b Individual coupling constants could not be determined.

derivatives 25 and 28 showed ¹H NMR spectra approximate to that of guanosine even for the guanine base protons (Table 1). This indicates that there were no significant effects of the 2-Nphosphoryl group on the chemical shifts of the guanine base protons.

Conformation of Ribose Residues Concerning the Ratio of 2'-C- and 3'-C-endo Conformers. The effect of the phosphoryl group of N-phosphorylated ribonucleosides on the conformation of the ribose residues was examined. The proton-proton coupling constants of N-phosphorylated nucleoside derivatives are summarized in Table 2 along with those of the corresponding nucleosides and nucleoside 5'-monophosphates as reference compounds. In general, the $J_{1',2'}$ value of the ribose moiety reflects the ratio of 2'-C-endo to 3'-C-endo forms which is calculated by the following equation: [2'-C-endo] (%) = $J_{1',2'}/(J_{1',2'}+J_{3',4'})$ × 100, where $J_{1',2'} + J_{3',4'}$ is nearly 10 Hz in general.⁴⁵ The $J_{1',2'}$ values of 5 and 12 in D_2O were 5.9 Hz each. The $J_{1',2'}$ values of adenosine were reported to be 5.8 Hz⁴⁶ and 6.1 Hz,⁴⁷ and that of adenosine 5'-monophosphate was reported to be 5.9 Hz.48 Therefore, the ribose puckering of the N-phosphorylated adenosines 5 and 12 is unaffected by the presence of a phosphate or a diethoxyphosphoryl group. The $J_{1',2'}$ values of the Nphosphorylated guanosine derivatives 25 and 28 in D₂O were 5.3 and 5.0, respectively. The reported $J_{1',2'}$ values of guanosine, guanosine 2'-phosphate, and guanosine 5'-phosphate were 5.8, 5.2, and 6.0 Hz, respectively. 48,49 These data suggested that the N-phosphoryl group leads to a small shift to the 3'-C-endo conformer to the same degree as the 2'-phosphate group. On the other hand, the $J_{1',2'}$ values of the N-phosphorylated cytidine derivatives 17 and 20 were 3.6 Hz each. The $J_{1',2'}$ values of cytidine and cytidine 5'-phosphate in D₂O were 4.0 and 4.1 Hz, respectively.⁴⁹ It is apparently concluded that the $J_{1',2'}$ value of the 3'-C-endo conformer was increased by approximately 0.5 Hz by addition of the N-phosphoryl or diethoxyphosphoryl group. This result is interesting since Yokoyama reported that the N-acetyl group attached to 2'-O-methylcytidine has a significant effect on the ratio of two conformers in favor of the 3'-C-endo conformer.44 This may be due to the antibonding lobe of the π^* orbital at 6-C of the 5-6 double bond contributing more effectively to intramolecular interaction with the lobe in which the lone pair electrons of the furanose ring are present.44

¹³C NMR and ³¹P NMR. The ¹³C NMR chemical shifts of the N-phosphorylated ribonucleoside derivatives are summarized in Table 3 along with those of the corresponding nucleosides and nucleoside 5'-monophosphates as reference compounds.50,51 In general, there were no significant effects of the N-phosphoryl group on the chemical shifts of the sugar carbons. In the case of N-phosphorylated guanosine derivatives 25 and 28, the resonance signal of 2-C was observed as a doublet which was due to the P-C coupling between the phosphorus and the carbon through two bonds. However, such P-C couplings were not observed in the case of 5, 12, 17, and 20.

The ³¹P NMR spectrum of each of the N-phosphorylated ribonucleoside derivatives showed the sole signal in the region around -3 to +4 ppm. Generally, the signals of the diethyl ester derivatives appeared in the upfield region.

UV Spectroscopy. The ultraviolet spectra of N-phosphorylated ribonucleosides (5, 17, and 25) and their diethyl esters (12, 20, and 28) at three different pH regions are shown in Figure 1 and Table 4. The pH profiles of the three N-phosphorylated ribonucleosides 5, 17, and 25 are essentially similar to those of the corresponding parent ribonucleosides. Particularly in the case of the guanosine derivative 25, the λ_{max} values at the three pH regions are preserved but shoulders around 267 nm, which are observed in the case of guanosine, are considerably weakened. However, the λ_{max} peak of the adenosine derivative 5 at pH 4 is shifted to longer wavelength by 6-7 nm compared to that of adenosine. The intensity of 5 at λ_{max} varied remarkably at pH 7 and 13. The ratio of the ϵ values of 5 at pH 13 and 7 is 1.29. Contrary to this fact, adenosine has relatively constant ϵ values $(\pm 5\%)$ at a wide range of pH (1.5-14). In the case of cytidine, the λ_{max} peak of 17 at pH 7 is shifted to longer wavelength by 3 nm compared with that of cytidine. The UV spectra of 4-Nacetylcytidine in acidic, neutral, and alkaline solutions are quite different from those of 17.52 These results suggest that the phosphate group on the nitrogen of the bases served not as an acyl type of group but as a substituent similar to an alkyl group like a methyl group.

CD Spectroscopy. The circular dichroism spectra of Nphosphorylated ribonucleosides are shown in Figure 2. It is well established that CD spectroscopy of nucleic acid monomers is particularly sensitive to the conformation around the glycosyl bond.⁵³ The CD spectra of 6-N-phosphorylated adenosine derivatives 5 and 12 were similar to those of adenosine.⁵³ These spectra showed the positive and negative Cotton effects around 270 and 220 nm, respectively (Figure 2A,B). These results suggested the 6-N-phosphorylated adenosine derivatives have the same syn conformation around the glycosyl bond as adenosine and 5'-AMP.53 In the case of the diethyl ester 12, a relatively strong positive Cotton effect was observed around 235 nm which was considerably weak in 6-N-AMP 5.

In the case of 4-N-phosphorylated cytidine derivatives 17 and 20, the CD spectra showed the negative and positive Cotton effects around 220 and 275 nm, respectively (Figure 2C,D). These spectra are similar to those of cytidine and 5'-CMP.53 Particularly, in the case of the diethyl ester 20, a very weak positive Cotton effect was observed as a shoulder around 240 nm.

The CD spectra of 2-N-phosphorylated guanosine derivatives showed strong positive and weak negative Cotton effects around 215 and 250 nm, respectively (Figure 2E,F). Guanosine and 5'-GMP have the same Cotton effects around a similar wavelength range.53

Generally, the above results suggest that the N-phosphoryl group did not affect the orientation of the purine and pyrimidine bases. The CD spectral data of the N-phophorylated ribonucleosides are summarized in Table 5.

⁽⁴⁵⁾ Altona, C.; Sandaralingam, M. J. Am. Chem. Soc. 1973, 95, 2333.
(46) Guschlbauer, W. Biochim. Biophys. Acta 1980, 610, 47.
(47) Altona, C.; Sundaralingam, M. J. Am. Chem. Soc. 1973, 95, 2333.
(48) Davies, D. B.; Danyluk, S. S. Biochemistry 1974, 13, 4417.
(49) Davies, D. B.; Danyluk, S. S. Biochemistry 1975, 14, 543.

⁽⁵⁰⁾ Jones, A. J.; Grant, D. M.; Winkley, M. W.; Robins, R. K. J. Am. Chem. Soc. 1970, 92, 4079.

⁽⁵¹⁾ Dorman, D. E.; Roberts, J. D. Proc. Natl. Acad. Sci. U.S.A. 1970,

 ⁽⁵²⁾ Van Montagan, M.; Stockx, J. Arch. Int. Physiol. Biochiem. 1965,
 158.

^{(53) (}a) Sprecher, C. A.; Johnson, Jr., W. C. Biopolymers 1977, 16, 2243. (b) Stewart, R. F.; Davidson, N. J. Chem. Phys. 1963, 39, 225. (c) Stewart, R. F.; Jensen, L. H. *Ibid.* 1964, 40, 2071. (d) Callis, P. R.; Fanconi, B.; Simpson, W. T. *J. Am. Chem. Soc.* 1971, 93, 6679. (e) Eaton, W. A.; Lemis, T. P. J. Chem. Phys. 1970, 53, 2164. (f) Callis, P. R.; Simpson, W. T. J. Am. Chem. Soc. 1970, 92, 3593.

Table 3. ¹³C NMR Chemical Shifts (ppm) of N-Phosphorylated Ribonucleosides

	1'-C	2′-C	3′-C	4'-C	5'-C	2-C	4-C	5-C	6-C	8-C	solvent
adenosine ^a	88.2	73.7	70.9	86.2	61.9	152.6	149.3	119.6	156.3	140.2	DMSO
5'-AMP ^b	87.0	70.5	74.5	84.2	63.5	152.4	148.4	118.0	155.0	139.9	H ₂ O
6-N-AMP 5	91.1	76.3	73.3	88.4	64.2	155.4	150.9	123.1	157.2	143.0	D_2O
6-N-AMP-Et (12)	91.1	76.5	73.2	88.5	64.1	154.2	152.8	125.0	154.5	145.2	D ₂ O
cytidine ^a	90.1	70.6	75.1	85.3	61.9	156.9	166.7	95.7	142.8		DMSO
5'-CMPb	89.1	69.7	74.3	83.3	63.3	157.5	166.2	95.6	141.8		H ₂ O
4-N-CMP 17	93.1	71.9	76.6	86.4	63.5	160.2	c	99.7	144.5		D ₂ O
4-N-CMP-Et (20)	93.3	71.8	76.9	86.7	63.2	157.1	166.0	101.0	145.7		D_2O
guanosinea	87.3	71.5	74.9	86.4	62.2	154.6	152.3	117.5	157.8	136.9	DMSO
5'-GMPb	87.0	70.6	74.3	84.1	63.9	153.6	151.0	115.7	158.3	137.3	H ₂ O
2-N-GMP 25	90.5	73.0	76.3	87.8	64.0	154.1	155.3	119.5	161.2	140.6	D_2O
2-N-GMP-Et (28)	91.1	72.7	76.0	87.4	64.1	151.4	152.6	124.1	161.4	142.2	D_2O

^a See ref 50. ^b See ref 51. ^c Chemical shift could not be determined.

Figure 1. UV spectra of N-phosphorylated ribonucleosides at three different pH regions: (A) 6-N-AMP 5, (B) 6-N-AMP-Et (12), (C) 4-N-CMP 17, (D) 4-N-CMP-Et (20), (E) 2-N-GMP 25, (F) 2-N-GMP-Et (28).

Infrared Spectroscopy. Next, the IR spectroscopic studies of N-phosphorylated ribonucleoside were examined. Kerr suggested that in the IR spectrum of Agrocin 84 a band at 1225 cm⁻¹ is due to the P-O stretching vibration of the phosphoramidate group.²⁴ On the other hand, Hatano reported the IR spectrum of dinogunellin, a P-N bond containing toxic phospholipid, showing that a band around 820-1040 cm⁻¹ is due to the P-N stretching vibration of the phosphoramidate group.²² In the case of 6-N-AMP 5, the IR spectra exhibited a strong band at 980 cm⁻¹ which may correspond to the P-N stretching vibration of the phosphoramidate group. It is noteworthy that the band at about 1650 cm⁻¹, due to the N-H deformation vibration of the amino group of adenine,⁵⁴ was considerably weakened in the 6-N-phosphorylated adenosine derivatives 5 and 12. In the case of 4-N-phosphorylated cytidine derivatives 17 and 20, the bands at about

1645 cm⁻¹ which are due to the N-H deformation vibration of the amino group of cytosine⁶¹ were also weakened in the 4-N-phsphorylated cytidine derivatives. However, the absorption bands corresponding to the P-N stretching vibration of the phosphoramidate group of these compounds could not be identified because these bands overapped with other strong bands. In the case of 2-N-phosphorylated guanosine derivatives 25 and 28, a characteristic band was observed around 960-965 cm⁻¹ which may be due to the P-N or P-O stretching vibration of the phosphoramidate group.

Paper Electrophoresis. Paper electrophoresis of N-phosphorylated ribonucleosides and related compounds was performed at various pH regions. These results are shown in Figure 3. Adenosine derivatives behave in a manner similar to that of cytidine at a whole range of pH 3-10. At lower pH values of 3 and 3.5, N-phosphorylated species 5 and 17 moved remarkably

Table 4. UV Spectral Data of N-Phosphorylated Ribonucleosides

	pН	$\lambda_{max} (nm)$	$\epsilon_{\rm max} \times 10^{-3}$	$\lambda_{min} (nm)$	$\epsilon_{\rm min} \times 10^{-3}$
6-N-AMP 5	4.0	263.0	15.9	249.0	12.2
	7.0	263.0	16.6	228.5	2.5
	13.0	264.5	21.4	230.0	4.7
6- <i>N</i> -AMP-Et (12)	1.0	259.5	12.9	226.5	3.3
	7.0	259.5	11.5	226.5	2.6
	13.0	273.5	18.4	235.0	2.3
4-N-CMP 17	1.0	286.5	12.8	247.5	1.8
	7.0	274.0	9.6	226.0	4.7
	13.0	275.0	10.8	226.5	5.7
4-N-CMP-Et (20)	1.0	283.0	7.6	250.0	2.4
	7.0	280.5	7.1	251.0	3.0
	13.0	275.5	9.4	230.0	4.8
2-N-GMP 25	1.0	256.0	11.1	225.5	2.3
	7.0	254.0	12.1	224.5	2.4
	13.0	258.0	8.8	233.0	3.7
2-N-GMP-Et (28)	1.0	255.5	11.8	222.5	2.0
` '	7.0	253.0	11.4	221.5	2.3
	13.0	260.5	12.9	232.5	3.8

Figure 2. CD spectra of N-phosphorylated ribonucleosides: (A) 6-N-AMP 5 at pH 7.0, (B) 6-N-AMP-Et (12) at pH 7.0, (C) 4-N-CMP 17 at pH 7.0, (D) 4-N-CMP-Et (20) at pH 6.2, (E) 2-N-GMP 25 at pH 6.6, (F) 2-N-GMP-Et (28) at pH 6.0.

200 220 240 260 280 300

200 220 240 260 280 300

Table 5. CD Spectral Data of N-Phosphorylated Ribonucleosides

	$\lambda_1 (nm)$	$[\theta]_{i_1} \times 10^{-4}$	$\lambda_2 (nm)$	$[\theta]_{\lambda 1} \times 10^{-4}$
6-N-AMP 5	271.2	-1.36	210.4	0.41
6-N-AMP-Et (12)	265.8	-0.72	219.6	0.47
4-N-CMP 17	275.8	1.68	219.6	-1.82
4-N-CMP-Et (20)	276.4	1.19	218.8	-1.71
2-N-GMP 25	250.8	-0.48	251.2	1.19
2-N-GMP-Et (28)	246.6	-0.21	213.6	0.75

to the anode compared to pA and pC, while adenosine and cytidine moved in the reverse direction. These results indicate that 5 and 17 are not protonated in these pH regions. Interestingly, we observed that the diethyl ester 28 moved slowly toward the anode, showing a mobility of 0.24 relative to pG. Under these conditions, guanosine did not move significantly from the origin. This is

Figure 3. Paper electrophoresis of N-phosphorylated ribonucleosides at different pH regions: (A) adenosine, 6-N-AMP 5, and 6-N-AMP-Et (12), (B) cytidine, 4-N-CMP 17, and 4-N-CMP-Et (20), (C) guanosine, 2-N-GMP 25, and 2-N-GMP-Et (28). The mobilities of the compounds were estimated relative to those of the corresponding parent nucleoside 5'-monophosphates as 1.0.

ascribed to partial dissociation of either the 2-phosphorylated NH group or the lactam NH at position 3 at pH 7.

Evidence of the presence of the 2',3'-cis-diol groups in 5 and 12 was obtained by paper electrophoresis in a borate buffer (pH 9.0). The neutral nucleoside 12 and adenosine comigrated with each other. In a similar manner, 5 and pA comigrated in proportion to the mobilities observed at pH 9 (phosphate buffer) (data not shown).

Solubility. N-Phosphorylated compounds are almost freely soluble in water. This is one of the characteristic features of N-phosphorylated ribonucleotides. This is in clear contrast to the fact that cytidine 5'-phosphate has a poor solubility in water and guanosine 5'-monophosphate tends to cause self-aggregation in water. Even N-diethoxyphosphorylated ribonucleosides 12, 20, and 28 were also soluble in water. On the other hand, the corresponding N-acetylated ribonucleosides have less solubility in water so that they are often recrystallized from water. The great solubility of N-phosphorylated ribonucleosides in water is explained by the P(O)P(OH)₂ or P(O)(OEt)₂ function increasing the hydrophilicity due to sites accessible to hydrogen bonding with water molecules.

Stability of N-Phosphorylated Ribonucleosides. In general, N-phosphorylated ribonucleosides 5, 12, 17, 20, 25, and 28 were quite stable under basic conditions such as 0.1 M NaOH and concentrated NH₃ for several days. On the contrary, compounds

Table 6. Stability of N-Phosphorylated Ribonucleosides^a

	6- <i>N</i> -AMP 5		6-N-AMP-Et (12) 4-N-CMP		MP 17	4-N-CMP-Et (20)		2- <i>N</i> -GMP 25		2-N-GMP-Et (28)		
	t _{1/2}	tcomp	$t_{1/2}$	$t_{\rm comp}$	t _{1/2}	tcomp	t _{1/2}	$t_{\rm comp}$	t _{1/2}	t_{comp}	t _{1/2}	t _{comp}
0.1 M HCl	4 h	24 h	stable		8 h	3 d	8 h	3 d	5 h	30 h	8 h	3 d
80% AcOH	24 h	4 d	stable		4 d		sta	ble	7 h	60 h	15 h	
0.1 M NaOH	sta	ble	stable		stable		stable		stable		stable	
concd NH ₃	sta	ble	sta	stable		ble	stable		stable stable		stable	

^a All reactions were carried out at room temperature.

5, 17, and 25 gradually decomposed in 0.1 M HCl. The diethyl esters 12, 20, and 28 were more stable than the corresponding unesterified phosphoramidates both in 0.1 M HCl and in 80% acetic acid. These results are summarized in Table 6. Compound 5 is sufficiently stable in 0.1 M ammonium acetate. However, the reversed-phase HPLC profile always exhibited two peaks corresponding to adenosine and 5 in a ca. 1:1 ratio. Therefore, it was impossible to monitor the reaction or stability of 5 by reversed-phase HPLC using ammonium acetate buffer.

Conclusion

The present method for the synthesis of a new class of phosphorylated nucleosides, adenosine 6-N-phosphoramidate (6-N-AMP), cytidine 4-N-phosphoramidate (4-N-CMP), guanosine 2-N-phosphoramidate (2-N-GMP), and their diethyl ester derivatives enabled us to obtain these compounds on a large scale with high purity. The new N-phosphorylated ribonucleosides prepared here would be useful as various kinds of substrates such as inhibitors in certain enzyme reactions or phosphoryl transfer reactions. We have obtained preliminary results of antivirus activities and mutagenicity by N-phosphorylated ribonucleosides. These results will be reported elsewhere. Further, the present method for the preparation of the N-phosphorylated nucleosides can be applied to the introduction of various functional groups such as reporter groups, photoreactive reagents, intercalators, DNA cleaving reagents, etc. via the N-phosphoryl group to the adenine, cytosine, or guanine base. These functionalized nucleosides can be incorporated into the specific site of oligonucleotides by chemical synthesis. The present results concerning the stability of the N-phosphorylated nucleosides suggested that the Nphosphoryl groups can be removed under acidic conditions. Therefore, it is possible to regenerate the amino group from the functionalized phosphoryl groups. The unique characteristics of the N-phosphorylated nucleosides would enable development of a wide variety of applications in nucleic acid chemistry.

Experimental Section

General Procedures. CH₂Cl₂ and MeCN were distilled from CaH₂ after being refluxed for several hours, and stored over molecular sieves 4A. Pyridine was distilled after being refluxed over p-toluenesulfonyl chloride for several hours, redistilled from CaH2, and stored over molecular sieves 4A. tert-Butyl hydroperoxide (containing 20% di-tert-butyl peroxide) was purchased from Merck & Co. Inc. N,N,N',N'-Tetraethylthiuram disulfide was purchased from Tokyo Kasei Inc. 1H NMR spectra were obtained at 270 MHz on a JEOL-EX-270 spectrometer with tetramethylsilane as an internal standard in CDCl3 and with sodium 3-(trimethylsilyl)propanesulfonate as an external standard in D₂O. ¹³C NMR spectra were obtained at 67.8 MHz on a JEOL-EX-270 spectrometer with tetramethylsilane as an internal standard. 31P NMR spectra were obtained at 109.25 MHz on a JEOL-EX-270 spectrometer using 85% H₃PO₄ as an external standard. UV spectra were recorded on a Hitachi 220A spectrophotometer. IR spectra were obtained on a Hitachi 260-50. CD spectra were obtained on a JASCO J-500C spectrometer at concentrations of 0.8-1.5 mM in water. Paper electrophoreses were carried out using 0.075 M morpholinium acetate buffer (pH 3.5) at 1500 V for 1.5 h, 0.05 M ammonium acetate buffer (pH 7.0) at 1200 V for 1.3 h, 0.1 M Tris-HCl buffer (pH 9.0) at 1500 V for 1.5 h, boric acid buffer (pH 9.0) at 1200 V for 1 h, and 0.05 M NaHCO₃ buffer (pH 10.0) at 1200 V for 1.5 h. The mobilities of the compounds were calculated relative to those of the corresponding parent nucleoside 5'-monophosphates. Thin-layer chromatography was performed on

precoated glass plates of Kieselgel 60 F_{254} (Merck, No. 5715). Silica gel column chromatography was carried out using Wakogel C-200. Revered-phase column chromatography was performed using Waters Prep-Pak C18

2',3',5'-Tri-O-benzoyladenosine (1a). Adenosine (0.535 g, 2 mmol) was dried by repeated coevaporation with dry pyridine and finally suspended in dry pyridine (20 mL). To the suspension were added benzoic anhydride (2.26 g, 10 mmol) and 4-(N,N-dimethylamino) pyridine (0.061 g, 0.05 mmol), and the mixture was stirred at room temperature (rt) for 2 h. The mixture was concentrated to half-volume, diluted with CHCl₃ and washed three times with 5% NaHCO₃ (aq), and the aqueous layer was back-extracted with CHCl₃. The organic layer and washings were combined and dried over Na₂SO₄, filtered, and concentrated to dryness under reduced pressure. The residue was applied to a silica gel column. Chromatography was performed with CH₂Cl₂, applying a gradient of methanol (1-1.5%). The fractions containing 1a were combined and concentrated to give 1a (1.136 g, 98%) as a colorless foam. ¹H and ¹³C NMR spectra of this product were identical to those of the authentic material.²⁷

2',3',5'-Tris-O-(phenoxyacetyl)adenosine (1c). Adenosine (0.267 g, 1 mmol) was dried by repeated coevaporation with dry pyridine and finally suspended in dry pyridine (10 mL). To the suspension was added phenoxyacetic anhydride (1.43 g, 5 mmol), and the mixture was stirred at rt for 10 min. The reaction was quenched with water, and the mixture was concentrated to dryness under reduced pressure. The residue was dissolved in CH2Cl2 and washed three times with 5% NaHCO3 (aq), and the aqueous layer was back-extracted with CH2Cl2. The organic layer and washings were combined and dried over Na₂SO₄, filtered, and evaporated to dryness. The residue was applied to a silica gel column. Chromatography was performed with CH2Cl2, applying a gradient of methanol (1.5-2.5%). The fractions containing 1c were combined and concentrated to give 1c (0.599 g, 89%) as a colorless foam: ¹H NMR (CDCl₃) δ 4.41-4.69 (9H, m, CH₂ of Pac, 4'-H, 5'-H, and 5"-H), 5.76 (2H, br s, NH₂), 5.83 (1H, dd, J_{3',4'} = 4.3 Hz, J_{3',2'} = 5.6 Hz, 3'-H), 6.06(1H, d, $J_{1',2'} = 5.6$ Hz, 1-H), 6.15 (1H, dd, $J_{2',1'} = J_{2',3'} = 5.6$ Hz, 2'-H), 6.78-7.03 (9H, m, 3,4,5-H of Ph), 7.19-7.33 (6H, m, 2,6-H of Ph), 7.88 (1H, s, 2-H), 8.33 (1H, s, 8-H); 13 C NMR (CDCl₃) δ 63.4 (5'-C), 64.6, 64.7, 65.0 (CH₂ of Pac), 71.3 (3'-C), 73.2 (2'-C), 79.8 (4'-C), 85.8 (1'-C), 114.4, 114.5, 114.5 (2,6-C of Ph), 119.8 (5-C), 121.9, 121.9, 122.0 (4-C of Ph), 129.5, 129.5, 129.6 (3,5-C of Ph), 139.0 (8-C), 149.4 (4-C), 153.0 (2-C), 155.7 (6-C), 157.3, 157.3, 157.4 (1-C of Ph), 167.7, 168.0, 168.4 (C=O of Pac). Anal. Calcd for $C_{34}H_{31}N_5O_{10}^{-1}/_5H_2O$: C, 60.66; H, 4.70; N, 10.40. Found: C, 60.60; H, 4.80; N, 10.56.

Triethylammonium 2',3',5'-Tri-O-benzoyladenosine 6-N-[(1,2,4-Triazolyl)phosphoramidate] (3a). To a mixture of 1,2,4-triazole (0.622 g, 9 mmol, dried by repeated coevaporation with dry pyridine and MeCN) and triethylamine (1.12 mL, 8 mmol) in dry MeCN (50 mL) at 0 °C was added phosphorus oxychloride (0.186 mL, 2 mmol). The reaction mixture was stirred at rt for 30 min. To the mixture was added 2',3',5'tri-O-benzoyladenosine (1a) (0.58 g, 1 mmol, dried by repeated coevaporation with dry pyridine) in dry MeCN (10 mL). After being stirred for 2 h, the mixture was treated with 0.5 M triethylammonium hydrogen carbonate and stirred at rt for an additional 1 h. The mixture was concentrated to a small volume, diluted with CHCl3, and washed six times with 0.5 M triethylammonium hydrogencarbonate, and the aqueous layer was back-extracted with CHCl₃. The organic layer and washings were combined and dried over Na2SO4, filtered, and concentrated to dryness. The residue was applied to a silica gel column. Elution was performed with CH2Cl2 containing 2% triethylamine, applying a gradient of methanol (0-7%). The fractions containing 3a were combined and concentrated to dryness. The residue was dissolved in CHCl3 and washed with water. The organic layer was dried over Na₂SO₄, filtered, and concentrated to give 3a (0.65 g, 80%) as a colorless foam: ³¹P NMR (CDCl₃) δ –15.3; ¹H NMR (CDCl₃) δ 1.29 (9H, t, J = 7.3 Hz, CH₃ of Et_3NH^+), 3.08 (6H, q, J = 7.3 Hz, CH_2 of Et_3NH^+), 4.6–4.9 (3H, m,

4'-H, 5'-H, and 5"-H), 6.20 (1H, dd, $J_{3',4'}$ = 4.6 Hz, $J_{3',2'}$ = 5.6 Hz, 3'-H), 6.32 (1H, dd, $J_{2',3'}$ = 5.6 Hz, $J_{2',1'}$ = 5.3 Hz, 2'-H) 6.43 (1H, d, $J_{1',2'}$ = 5.3 Hz, 1'-H), 7.32–7.59 (11H, m, ArH), 7.89–8.12 (9H, m, ArH), 8.37 (1H, s, 8-H), 8.95 (1H, s, NH); 13 C NMR (CDCl₃) δ 8.6 (CH₂ of Et₃-NH+), 45.8 (CH₂ of Et₃NH+), 63.5 (5'-C), 71.3 (3'-C), 73.8 (2'-C), 80.5 (4'-C), 86.5 (1'-C), 121.8 (5-C), 128.1, 128.4, 128.6, 128.9, 129.2, 129.6, 129.7, 129.7, 133.2, 133.5, 133.6 (Bz), 149.8, 149.9 (triazole), 150.0 (4-C), 152.7 (2-C), 152.9 (6-C), 164.9, 165.2, 166.0 (C=O of Bz).

Triethylammonium Adenosine 6-N-Phosphorodiamidate (6). Triethylammonium 2',3',5'-tri-O-benzoyladenosine 6-N-[(1,2,4-triazolyl)phosphoramidate] (3a) (0.152 g, 0.2 mmol) was treated with concentrated NH₃-pyridine (9:1, v/v, 50 mL) at rt for 6 h. Ammonia and pyridine were removed by evaporation, and the residue was dissolved in water and washed five times with ether. The aqueous layer was concentrated to a small volume and applied to a column of anion exchange resin (Sephadex A25, HCO_3 form, 80×20 mm). Chromatography was performed with a gradient of triethylammonium hydrogen carbonate (0-1 M), and the fractions containing 6 were combined and concentrated. Triethylammonium hydrogen carbonate was removed by repeated coevaporation with water, and the solution was lyophilized to give 6 (0.091 g, 83%) as a white powder: ${}^{31}P$ NMR (D₂O) δ 2.64; ${}^{1}H$ NMR (D₂O) δ 1.08 (9H, t, J = 7.3 Hz, CH₃ of Et₃NH⁺), 2.88 (6H, q, J = 7.3 Hz, CH₂ of Et₃-NH⁺), 3.73 (1H, dd, $J_{5'',5'}$ = 12.9 Hz, $J_{5'',4'}$ = 3.6 Hz, 5"-H), 3.82 (1H, dd, $J_{5',5''}$ = 12.9 Hz, $J_{5',4'}$ = 2.6 Hz, 5'-H), 4.18 (1H, d, $J_{4',3'}$ = 3.3 Hz, 4'-H), 4.32 (1H, dd, $J_{3',4'}$ = 3.3 Hz, $J_{3',2'}$ = 5.3 Hz, 3'-H), 4.66 (1H, dd, $J_{2',1'} = 5.9 \text{ Hz}, J_{2',3'} = 5.3 \text{ Hz}, 2'-\text{H}) 5.95 (1\text{H}, d, J_{1',2'} = 5.9 \text{ Hz}, 1'-\text{H}),$ 8.24 (1H, s, 8-H), 8.32 (1H, s, 2-H); 13 C NMR (D₂O) δ 11.4 (CH₃ of Et₃NH⁺), 48.8 (CH₂ of Et₃NH⁺), 64.1 (5'-C), 73.3 (3'-C), 76.4 (2'-C), 88.4 (4'-C), 91.0 (1'-C), 123.2 (d, J_{PNCC} = 8.6 Hz, 5-C), 143.6 (8-C), 151.4 (4-C), 155.0 (2-C), 156.2 (6-C).

2',3',5'-Tri-O-benzoyladenosine 6-N-[O,O-Bis(2-cyanoethyl)phosphoramidate] (8a). 2',3',5'-Tri-O-benzoyladenosine (1a) (2.318 g, 4 mmol) and 1H-tetrazole (0.631 g, 9 mmol) were dried by repeated coevaporation with dry pyridine and dry CH₂Cl₂ and finally dissolved in dry CH₂Cl₂ (40 mL). To the mixture was added bis(2-cyanoethoxy)(N,N-diisopropylamino)phosphine (1.628 g, 6 mmol). After being stirred at rt for 1 h, the mixture was treated with tert-butyl hydroperoxide (5 mL, 40 mmol) and stirred at rt for 1 h. The mixture was diluted with CH2Cl2 and washed three times with 5% NaHCO3 (aq), and the aqueous layer was back-extracted with CH2Cl2. The organic layer and washings were combined and dried over Na₂SO₄, filtered, and concentrated to dryness. The residue was applied to a silica gel column. Chromatography was performed first with CH₂Cl₂-hexane (1:1, v/v) containing 0.2% acetic acid and then with CH2Cl2 containing 0.2% acetic acid, applying a gradient of methanol (0-2%). The fractions containing 8a were combined and concentrated to give 8a (2.88 g, 94%) as a colorless foam: ³¹P NMR $(CDCl_3) \delta -0.22$; ¹H NMR $(CDCl_3) \delta 2.82 (4H, t, J = 6.3 Hz, CH_2CN)$, 4.43-4.55 (4H, m, POCH₂), 4.68-4.92 (3H, m, 4'-H, 5'-H, and 5"-H), 6.23 (1H, dd, $J_{3',4'}$ = 5.0 Hz, $J_{3',2'}$ = 5.3 Hz, 3'-H), 6.39 (1H, dd, $J_{2',3'}$ = 5.3 Hz, $J_{2',1'}$ = 5.0 Hz, 2'-H) 6.48 (1H, d, $J_{1',2'}$ = 5.0 Hz, 1'-H), 7.43-7.58 (9H, m, Bz), 7.91-8.07 (6H, m, Bz), 8.42 (1H, s, 2-H), 8.49 (1H, s, 8-H); ¹³C NMR (CDCl₃) δ 19.6 (d, J_{POCC} = 9.8 Hz, CH₂CN), $62.4 \text{ (d, } J_{POC} = 2.5 \text{ Hz, POCH}_2), 63.5 (5'-C), 71.3 (3'-C), 73.9 (2'-C),$ 80.6 (4'-C), 87.0 (1'-C), 116.6 (5-C), 121.9 (d, $J_{POCCC} = 12.2 \text{ Hz}$, CN), 128.3, 128.4, 128.5, 128.6 (3,5-C of Bz), 129.2, 129.4, 129.6, 129.7 (2,6-C of Bz), 133.5, 133.7, 133.7 (4-C of Bz), 142.1 (8-C), 150.7 (4-C), 151.4 (2-C), 152.3 (6-C), 165.1, 165.2, 166.1 (C=O of Bz). Anal. Calcd for $C_{37}H_{32}N_7O_{10}P^{-1}/_2H_2O$: C, 57.37; H, 4.29; N, 12.64. Found: C, 57.29; H, 4.59; N, 12.59

Disodium Adenosine 6-N-Phosphoramidate (5). 2',3',5'-Tri-O-benzoyladenosine 6-N-[O,O-bis(2-cyanoethyl)phosphoramidate] (8a) (0.574 g, 0.75 mmol) was treated with concentrated NH₃-pyridine (9:1, v/v, 20 mL) at rt for 12 h. The mixture was evaporated under reduced pressure, and the residue was dissolved in water. The aqueous solution was washed three times with ether and concentrated to a small volume. The residue was applied to a column of cation exchange resin (Dowex 50Wx8, Na+ form, 300×15 mm) and eluted with water. The eluate was concentrated to a small volume and applied to a column of Sephadex G-10 (300 × 15 mm) eluted with water. The fractions containing 5 were combined and lyophilized to give 5 with a small amount of impurity. The crude 5 was subjected to a C18 reversed-phase column (80 × 20 mm), and elution was performed with water, applying a gradient of MeCN (0-10%). The fractions containing 5 were combined and lyophilized to give 5 (0.268 g, 91%) as a white powder: ^{31}P NMR (D₂O) δ –2.73; IR (KBr), ν 560, 625, 705, 800, 840, 875, 900, 980, 1035, 1094, 1140, 1165, 1260, 1310, 1415, 1440, 1485, 1545, 1595, and 1615 cm⁻¹; HRMS (FAB-) 392.0348, calcd

for $C_{10}H_{12}N_5O_7PNa_2$ 392.0291. Anal. Calcd for $C_{10}H_{12}N_5O_7PNa_2^{-1}/_2H_2O$: C, 28.72; H, 3.62; N, 16.74. Found: C, 28.81; H, 3.89; N. 10.88.

2',3',5'-Tri-Q-benzoyladenosine 6-N-[Q,Q-Bis(2-cyanoethyl)phosphorothioamidate] (9a). A procedure similar to that described in the case of 8a, using N.N.N'.N'-tetraethylthiuram disulfide (4.5 equiv in MeCN at rt for 2 h) in place of tert-butyl hydroperoxide, gave 9a (0.381 g, 52%) as a colorless foam: ³¹P NMR (CDCl₃) δ 63.7; ¹H NMR (CDCl₃) δ 2.81 $(4H, t, J = 6.3Hz, CH_2CN), 4.41-4.54 (4H, m, POCH_2), 4.71 (1H, dd,$ $J_{5'',5'} = 11.9 \text{ Hz}, J_{5'',4'} = 4.3 \text{ Hz}, 5''-H), 4.84 (1H, ddd, <math>J_{4',3'} = 5.0 \text{ Hz},$ $J_{4',5'} = 3.3 \text{ Hz}, J_{4',5''} = 4.3 \text{ Hz}, 4'-\text{H}), 4.91 (1H, dd, <math>J_{5',5''} = 12.9 \text{ Hz}, J_{5',4'}$ = 3.3 Hz, 5'-H), 6.23 (1H, dd, $J_{3',4'}$ = 5.0 Hz, $J_{3',2'}$ = 5.3 Hz, 3'-H), 6.38 $(1H, dd, J_{2',3'} = 5.3 Hz, J_{2',1'} = 5.0 Hz, 2'-H) 6.43 (1H, d, J_{1',2'} = 5.0 Hz, 2'-H)$ Hz, 1'-H), 7.16-7.62 (11H, m, ArH), 7.91-8.11 (7H, m, ArH); 13C NMR (CDCl₃) δ 19.4 (d, J_{POCC} = 8.5 Hz, CH₂CN), 62.4 (d, J_{POC} = 3.7 Hz, POCH₂), 63.6 (5'-C), 71.4 (3'-C), 73.9 (2'-C), 80.8 (4'-C), 87.2 (1'-C), 116.5 (5-C), 128.3, 128.6, 128.6 (3,5-C of Bz), 129.3, 129.7, 129.8 (2,6-C of Bz), 133.4, 133.7, 133.8 (4-C of Bz), 141.8 (8-C), 150.7 (2-C), 165.1, 165.3, 166.1 (C=O of Bz). Anal. Calcd for C₁₇H₃₂N₇O₉-PS: C, 56.85; H, 4.13; N, 12.54; S, 4.10. Found: C, 57.11; H, 4.41; N, 12.86; S, 5.12.

2',3',5'-Tri-O-acetyladenosine 6-N-[O,O-Diethyl phosphoramidate] (11b). Method A. To a mixture of 1,2,4-triazole (0.257 g, 3.7 mmol, dried by repeated coevaporation with dry pyridine and MeCN) and triethylamine (0.5 mL, 3.55 mmol) in dry MeCN (8 mL) at 0 °C was added phosphorus oxychloride (0.077 mL, 0.83 mmol). The reaction mixture was stirred at rt for 30 min. The supernatant was withdrawn by a syringe and added to a suspension of 2',3',5'-tri-O-acetyladenosine (1b) (0.163 g, 0.413 mmol, dried by repeated coevaporation with dry pyridine) in dry pyridine (4 mL). After being stirred for 1.5 h, the mixture was evaporated under reduced pressure, and dry ethanol (8 mL) was added to the residue. The mixture was stirred at rt for 1 h and concentrated to dryness. The residue was dissolved with CHCl3 and washed three times with 5% NaHCO3 (aq), and the aqueous layer was back-extracted with CHCl3. The organic layer and washings were combined and dried over Na₂SO₄, filtered, and concentrated to dryness. Silica gel column chromatography with CH₂Cl₂ containing 0.2% acetic acid, applying a gradient of methanol (0-1.5%), gave 11b (0.93 g, 43%) as a hygroscopic

Method B. 2',3',5'-Tri-O-acetyladenosine (1b) (0.399 g, 1.01 mmol) was dried by repeated coevaporation with dry pyridine and finally suspended in dry pyridine (10 mL). To the suspension was added diethyl phosphorochloridite (0.294 mL, 2.02 mmol) and triethylamine (0.283 mL, 2.02 mmol). After being stirred at rt for 1 h, the mixture was treated with tert-butyl hydroperoxide (4.1 mL, 12.1 mmol) and stirred at rt for 1 h. The mixture was diluted with CHCl₃ and washed three times with 5% NaHCO₃ (aq), and the aqueous layer was back-extracted with CHCl₃. The organic layer and washings were combined, dried over Na₂SO₄, filtered, and concentrated to dryness. The residue was applied to a silica gel column and eluted with CH_2Cl_2 containing 0.2% acetic acid, applying a gradient of methanol (0-1.5%). The fractions containing 11b were combined and concentrated to give 11b (0.491 g, 91%) as a hygroscopic foam: ^{31}P NMR (CDCl₃) δ -0.75; ^{1}H NMR (CDCl₃) δ 1.36 (6H, 2t, J = 7.0 Hz, CH₃ of Et), 2.09, 2.11, 2.16 (9H, 3s, Ac), 4.04–4.43 (7H, m, POCH₂, 5'-H, 5"-H, and 4'-H), 5.70 (1H, t, $J_{3',2'} = 5.4$ Hz, 3'-H), 6.01 (1H, t, $J_{2',3'}$ = 5.4 Hz, 2'-H) 6.25 (1H, d, $J_{1',2'}$ = 5.1 Hz, 1'-H), 8.46 (1H, s, 2-H), 8.63 (1H, s, 8-H); 13 C NMR (CDCl₃) δ 15.9 (d, J_{POCC} = 7.3 Hz, CH₃ of Et), 20.2, 20.3, 20.5 (Ac), 62.9 (5'-C), 63.7 (d, J_{POC} = 4.9 Hz, POCH₂), 70.4 (3'-C), 72.8 (2'-C), 80.4 (4'-C), 86.2 (1'-C), 121.5 $(d, J_{PNCC} = 12.1 \text{ Hz}, 5-C), 141.4 (8-C), 150.4 (4-C), 151.9 (2-C), 152.7$ (6-C), 169.3, 169.5, 170.3 (C=O of Ac).

2',3',5'-Tris-O-(phenoxyacetyl)adenosine 6-N-[O,O-Diethyl phosphoramidate] (11c). 2',3',5'-Tris-O-(phenoxyacetyl)adenosine (1c) (0.134 g, 0.2 mmol) and 1H-tetrazole (0.032 g, 0.45 mmol) were dried by repeated coevaporation with dry pyridine followed by dry MeCN and dissolved in dry MeCN (2 mL). To the mixture of 1c and 1H-tetrazole in dry MeCN was added diethoxy(N,N-diisopropylamino)phosphine (0.089 g, 0.4 mmol). After being stirred at rt for 1 h, tert-butyl hydroperoxide (0.25 mL, 2 mmol) was added, and the mixture was stirred at rt for 1 h. The mixture was diluted with CH₂Cl₂, washed three times with 5% NaHCO₃(aq), and the aqueous layer was back-extracted with CH₂Cl₂. The organic layer and washings were combined, dried over Na₂SO₄, filtered, and concentrated to dryness. The residue was applied to a silica gel column. Chromatography was performed with CH₂Cl₂ containing 0.2% acetic acid, applying a gradient of methanol (0-1.5%). The fractions containing 11c were combined and concentrated to give 11c (0.161 g,

81%) as a colorless foam: ³¹P NMR (CDCl₃) δ –1.32; ¹H NMR (CDCl₃) δ 1.37 (6H, t, J = 7.3 Hz, CH₃ of Et), 4.20–4.30 (4H, m, POCH₂), 4.32–4.69 (9H, m, CH₂ of Pac, 4'-H, 5'-H, and 5"-H), 5.81 (1H, dd, $J_{3',4'}$ = 4.3 Hz, $J_{3',2'}$ = 5.3 Hz, 3'-H), 6.06–6.18 (2H, m, 1'-H and 2'-H), 6.78–7.03 (9H, m, 3,4,5-H of Ph), 7.19–7.33 (7H, m, 2,6-H of Ph and NH), 8.10 (1H, s, 2-H), 8.49 (1H, s, 8-H); ¹³C NMR (CDCl₃) δ 16.1 (d, J_{POCC} = 7.3 Hz, CH₃ of Et), 63.3 (5'-C), 63.9 (d, J_{POC} = 6.1 Hz, POCH₂), 64.7, 64.8, 65.1 (CH₂ of Pac), 71.3 (3'-C), 73.2 (2'-C), 79.8 (4'-C), 86.0 (1'-C), 114.4, 114.5, 114.6 (5-C and 2,6-C of Ph), 121.9, 122.0, 122.1 (4-C of Ph), 129.5, 129.6, 129.7 (3,5-C of Ph), 141.4 (8-C), 150.4 (4-C), 151.9 (2-C), 152.8 (6-C), 157.3, 157.4 (1-C of Ph), 167.7, 168.0, 168.4 (C=O of Pac). Anal. Calcd for C₃₈H₄₀N₅O₁₃P: C, 56.65; H, 5.00; N, 8.69. Found: C, 56.68; H, 5.10; N, 9.00.

Adenosine 6-N-[O,O-Diethyl phosphoramidate] (12). 2',3',5'-Tris-O-(phenoxyacetyl)adenosine 6-N-[O,O-diethyl phosphoramidate] (11c) (0.403 g, 0.5 mmol) was treated with concentrated NH₃-pyridine-water (5:40:55, v/v/v, 50 mL) at rt for 30 min. The mixture was evaporated to dryness, and the residue was dissolved in water and washed three times with ether. The aqueous layer was concentrated to a small volume and applied to a C18 reversed-phase column (18 × 20 mm) and eluted with water, applying a gradient of MeCN (0-6%). The fractions containing 12 were combined and lyophilized to give 12 (0.127 g, 63%) as a white powder: ^{31}P NMR (D₂O) δ 1.30; IR (KBr) v 740, 865, 975, 1025, 1160, 1225, 1325, 1355, 1440, 1455, 1580, and 1605 cm⁻¹. Anal. Calcd for C₁₄H₂₂N₅O₇P: C, 41.69; H, 5.50; N, 17.36. Found: C, 41.65; H, 5.55; N, 16.78.

2',3',5'-Tri-O-acetyladenosine 6-N-[O,O-Diethyl phosphorothioamidate] (13b). 2',3',5'-Tri-O-acetyladenosine (1b) (0.393 g, 1.42 mmol) was dried by repeated coevaporation with dry pyridine and suspended in dry pyridine (20 mL). To the above suspension were added diethyl phosphorochloridite (0.587 mL, 2.84 mmol) and triethylamine (0.565 mL, 2.84 mmol). After being stirred at rt for 1 h, a solution of S₈ (3.1 g, 100 mmol) in CS₂ (10 mL) was added, and the mixture was stirred at rt for 22 h. The mixture was evaporated to a small volume, and excess S_8 was filtered. The filtrate was diluted with CHCl₃ and washed three times with 5% NaHCO₃(aq), and the aqueous layer was back-extracted with CHCl3. The organic layer and washings were combined, dried over Na2SO4, filtered, and concentrated to dryness. The residue was applied to a silica gel column and eluted first with CH2Cl2-hexane (2:8, v/v) containing 0.5% triethylamine followed with CH₂Cl₂-hexane (4:6, v/v) containing 0.5% triethylamine. The fractions containing 13b were combined and concentrated to give 13b (0.403 g, 52%) as a colorless foam: $^{31}P\ NMR$ (CDCl₃) δ 63.96; ¹H NMR (CDCl₃) δ 1.35 (6H, t, J = 7.0 Hz, CH₃ of Et), 2.08, 2.12, 2.15 (9H, 3s, Ac), 4.11-4.44 (7H, m, POCH₂, 4'-H, 5'-H, and 5"-H), 5.68 (1H, t, J = 5.4 Hz, 3'-H), 5.96 (1H, dd, $J_{2',3'} = 5.3$ Hz, $J_{2',1'} = 5.1 \text{ Hz}, 2'-\text{H}) 6.20 (1\text{H}, d, J_{1',2'} = 5.1 \text{ Hz}, 1'-\text{H}), 8.11 (1\text{H}, s, 2-\text{H}),$ 8.62 (1H, s, 8-H); 13 C NMR (CDCl₃) δ 15.5 (d, J_{POCC} = 7.3 Hz, CH₃ of Et), 20.2, 20.3, 20.6 (Ac), 62.8 (5'-C), 64.7 (d, $J_{POC} = 17.1 \text{ Hz}$, POCH₂), 70.4 (3'-C), 72.9 (2'-C), 80.2 (4'-C), 86.2 (1'-C), 121.1 (5-C), 143.4 (8-C), 151.9, 152.2, 153.0 (2-C, 4-C, and 6-C), 169.1, 169.3, 170.1 (C=O of Ac).

2',3',5'-Tri-O-benzoylcytidine 4-N-[O,O-Bis(2-cyanoethyl)phosphoramidate] (16). 2',3',5'-Tri-O-benzoylcytidine (14a) (0.556 g, 1 mmol) and 1H-tetrazole (0.105 g, 1.5 mmol) were dried by repeated coevaporation with dry pyridine followed by dry MeCN and dissolved in dry MeCN (10 mL). To the mixture of 14a and 1H-tetrazole in dry MeCN was added bis(2-cyanoethoxy)(N,N-diisopropylamino)phosphine (0.407 g, 1.5 mmol). After being stirred at rt for 2 h, tert-butyl hydroperoxide (1.25 mL, 10 mmol) was added, and the mixture was stirred at rt for 1 h. The mixture was diluted with CH2Cl2, washed three times with 5% NaHCO₃(aq), and the aqueous layer was back-extracted with CH₂Cl₂. The organic layer and washings were combined, dried over Na₂SO₄, filtered, and concentrated to dryness. The residue was applied to a silica gel column. Chromatography was performed first with CH2Cl2-hexane (1:1, v/v) containing 0.2% acetic acid followed with CH2Cl2 containing 0.2% acetic acid, applying a gradient of methanol (0-1.5%). The fractions containing 16 were combined and concentrated to give 16 (0.441 g, 61%) as a colorless foam: ³¹P NMR (CDCl₃) δ 6.03; ¹H NMR (CDCl₃) δ 2.76 $(4H, t, J = 6.3 \text{ Hz}, CH_2CN), 4.21-4.29 (4H, m, POCH_2), 4.67-4.85$ (3H, m, 4'-H, 5'-H, and 5"-H), 5.73 (1H, dd, $J_{2',3'} = 5.9$ Hz, $J_{2',1'} = 5.3$ Hz, 2'-H), 5.86-5.91 (2H, m, 3'-H and 5-H), 6.29 (1H, d, $J_{1',2'} = 5.3$ Hz, 1'-H), 7.34-7.63 (10H, m, Bz, 6-H and NH), 7.92-8.11 (6H, m, Bz); ¹³C NMR (CDCl₃) δ 19.7 (d, $J_{POCC} = 7.4$ Hz, CH₂CN), 61.3 (d, J_{POC} = 6.1 Hz, POCH₂), 63.6 (5'-C), 71.1 (3'-C), 73.8 (2'-C), 80.6 (4'-C), 88.5 (1'-C), 103.3 (d, J_{POCCC} = 20.8 Hz, CN), 116.6 (5-C), 128.3, 128.6, 128.8, 129.1, 129.6, 129.8, 129.9, 133.7, 133.8, 133.9 (Bz), 139.9 (6-C),

148.0 (2-C), 159.7 (4-C), 165.3, 166.0 (C=O of Bz). Anal. Calcd for $C_{36}H_{32}N_5O_{11}P^{1/}_2H_2O$: C, 57.60; H, 4.43; N, 9.33. Found: C, 57.33; H, 4.90; N, 9.83.

Disodium Cytidine 4-N-Phosphoramidate (17). 2',3',5'-Tri-O-benzoylcytidine 4-N-[O,O-bis(2-cyanoethyl)] phosphoramidate] (16) (0.794) g, 1.09 mmol) was treated with concentrated NH3-pyridine (9:1, v/v, 40 mL) at rt for 12 h. Ammonia and pyridine were removed by evaporation, and the residue was dissolved in water and washed three times with ether. The aqueous layer was concentrated to a small volume and applied to a column of cation exchange resin (Dowex 50Wx8, Na+ form, 300 × 15 mm) and eluted with water. The eluate was concentrated to a small volume and applied to a column of Sephadex G-10 (300 × 15 mm) and eluted with water. The fractions containing 3 were combined and lyophilized to give 17 with a small impurity. The crude 17 was purified on a C18 reversed-phase column (80 × 20 mm) and eluted with water, applying a gradient of MeCN (0-15%). The fractions containing 3 were combined and lyophilized to give 17 (0.307 g, 76%) as a white powder: 31 P NMR (D₂O) δ –3.15; IR (KBr) ν 545, 625, 780, 840, 970, 1065, 1120, 1435, 1475, 1535, 1620, and 1630 cm $^{-1}$; HRMS (FAB $^-$) 366.0113, calcd for C9H11N3O8PNNa2 366.1550.

Cytidine 4-N-[O,O-Diethyl phosphoramidate] (20). Cytidine (0.486 g, 2 mmol) was dried by repeated coevaporation with dry pyridine and suspended in dry pyridine-MeCN (1:1, v/v, 20 mL). To the above suspension was added hexamethyldisilazane (2.1 mL, 10 mmol), and the mixture was refluxed for 2 h. The reaction mixture was cooled to rt and concentrated to give a colorless foam. The resulting foam was dissolved in dry MeCN (20 mL), and diethoxy(N,N-diisopropylamino)phosphine (0.893 g, 4 mmol) and 1H-tetrazole (0.350 g, 10 mmol) were added. After being stirred at rt for 2 h, tert-butyl hydroperoxide (2.5 mL, 20 mmol) was added, and the mixture was stirred at rt for 30 min. The reaction was quenched with water, and the mixture was concentrated to dryness. The residue was dissolved in water and applied to a C18 reversedphase column (80 × 20 mm) and eluted with water, applying a gradient of MeCN (0-6%). The fractions containing 20 were combined and lyophilized to give 20 (0.572 g, 75%) as a white powder: $^{31}PNMR(D_2O)$ δ 2.95; IR (KBr) ν 505, 945, 1010, 1190, 1445, 1540, and 1600 cm⁻¹.

2',3',5'-Tri-O-acetylguanosine 2-N-[O,O-Bis(2-cyanoethyl) phosphoramidate] (24). 2',3',5'-Tri-O-acetylguanosine (21) (0.819 g, 2.0 mmol)was dried by repeated coevaporation with dry pyridine and dissolved in dry pyridine (20 mL). Trimethylsilyl chloride (1.02 mL, 8.0 mmol) was added to the above mixture and stirred at rt for 30 min. To the mixture was added bis(2-cyanoethoxy)(N,N-diisopropylamino)phosphine (0.814 g, 3.0 mmol). After being stirred at rt for 2 h, tert-butyl hydroperoxide (2.5 mL, 20 mmol) was added, and the mixture was stirred at rt for 30 min. The reaction was quenched by the addition of water, and the mixture was diluted with CH₂Cl₂-pyridine (2:1, v/v, 40 mL). The organic layer was washed three times with 5% NaHCO₃(aq), and the aqueous layer was back-extracted with CH2Cl2-pyridine (2:1, v/v). The organic layer and washings were combined, dried over Na2SO4, filtered, and concentrated to dryness. The residue was applied to a silica gel column. Chromatography was performed with CH2Cl2, applying a gradient of methanol (0-4%). The fractions containing 24 were combined and concentrated to a colorless foam. The product was recrystallized from MeOH (20 mL) to give 24 (0.304 g, 26%) as a crystal: mp 166-168 °C; ³¹P NMR (CDCl₃:CD₃OD = 2:1, v/v) δ –1.05; ¹H NMR (CDCl₃:CD₃-OD = 2:1) δ 2.11, 2.14, 2.16 (9H, 3s, Ac), 2.91 (4H, t, J = 3.6 Hz, CH₂CN), 4.36-4.49 (7H, m, POCH₂, 4'-H, 5'-H and 5"-H), 5.52 (1H, t, $J_{3',4'} = J_{3',2'} = 5.6 \text{ Hz}$, 3'-H), 5.99 (1H, dd, $J_{2',3'} = 5.6 \text{ Hz}$, $J_{2',1'} = 4.6$ Hz, 2'-H) 6.07 (1H, d, $J_{1',2'}$ = 4.6 Hz, 1'-H), 7.93 (1H, s, 8-H). Anal. Calcd for C₂₂H₂₇N₇O₁₁P: C, 44.30; H, 4.56; N, 16.43. Found: C, 44.03; H, 4.64; N, 16.51.

Disodium Guanosine 2-N-Phosphoramidate (25). 2',3',5'-Tri-O-acety-ladenosine 2-N-[O,O-bis(2-cyanoethyl) phosphoramidate] (24) (0.119 g, 0.2 mmol) was treated with concentrated NH₃-pyridine (4:1, v/v, 20 mL) at rt for 2 d. Ammonia and pyridine were removed by evaporation, and the residue was dissolved in water and washed three times with ether. The aqueous layer was concentrated to a small volume and applied to a column of cation exchange resin (Dowex 50Wx8, Na⁺ form, 300×15 mm) and eluted with water. The eluate was concentrated to a small volume and applied to a column of Sephadex G-10 (300×15 mm) and eluted with water. The fractions containing 25 were combined and lyophilized to give 25 (0.078 g, 99%) as a white powder: ^{31}P NMR

(D₂O) δ –1.73; IR (KBr) ν 535, 630, 965, 1070, 1090, 1320, 1555, 1580, and 1645 cm⁻¹; HRMS (FAB⁻) 362.0473, calcd for C₁₀H₁₃N₅O₈P 362.2152.

2',3',5'-Tri-O-acetylguanosine 2-N-[O,O-Diethyl phosphoramidate] (27). By the same procedure as described for 24, diethoxy(N,N-diisopropyl)aminophosphine was used in place of bis(2-cyanoethoxy)-(N,N-diisopropylamino)phosphine to give 27 (0.123 g, 45%) as a colorless foam: ^{31}P NMR (CDCl₃) δ -0.43; ^{1}H NMR (CDCl₃:CD₃OD (2:1, v/v) δ 1.37 (6H, t, J = 7.3 Hz, CH₃ of Et), 2.09, 2.12, 2.13 (9H, 3s, Ac), 4.17-4.29 (4H, m, POCH₂), 4.39-4.54 (3H, m, 4'-H, 5'-H and 5''-H), 5.63 (1H, dd, $J_{3',4'}$ = 4.3 Hz, $J_{3',2'}$ = 4.6 Hz, $J_{2',1'}$ = 5.0 Hz, $J_{2',1'}$ = 4.7 and 1'-H), 7.69 (1H, s, 8-H), 8.62 (1H, bs, NH). Anal. Calcd for $C_{20}H_{28}N_{5}O_{11}P^{-1}/_{2}H_{2}O$: C, 43.33; H, 5.27; N, 12.63. Found: C, 43.27; H, 5.60; N, 12.99.

Guanosine 2-N-[O,O-Diethyl phosphoramidate] (28). 2',3',5'-Tri-O-acetylguanosine 2-N-[O,O-diethyl phosphoramidate] (27) (0.164 g, 0.3 mmol) was treated with 0.5 M NaOH-pyridine (1:1, v/v, 20 mL) at rt for 2 h. Dowex 50Wx8 (H+ form, 300 × 15 mm) was added to neutralize the mixture, and the resin was filtered off. The filtrate was concentrated to a small volume and applied on a column of reversed-phase C18 (80 × 20 mm). Chromatography was performed with a gradient of 0-15%

MeOH in water. The fractions containing 28 were combined and lyophilized to give 28 (0.108 g, 80%) as a white powder: 31 P NMR (D₂O) δ 0.57; IR (KBr) ν 535, 905, 960, 1020, 1050, 1160, 1235, 1280, 1360, 1445, 1550, 1575, 1600, and, 1685 cm⁻¹; Anal. Calcd for C₁₄H₂₂N₅O₈P·H₂O: C, 38.45; H, 5.53; N, 16.01. Found: C, 38.81; H, 5.30; N, 15.93.

Acknowledgment. We thank Dr. Alex Andrus for his critical comments and valuable suggestions in the preparation of the paper. This work was supported by the Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture, Japan.

Supplementary Material Available: Figures showing the ¹H, ¹³C, and ³¹P NMR spectra of **3a**, **5**, **6**, **11b**, **12**, **13b**, **17**, **20**, **25**, and **28** (30 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.