Synthesis and Properties of N -Phosphorylated Ribonucleosides

Takeshi Wada, Tomohisa Moriguchi, and Mitsuo Sekine*
Contribution from the Department of Life Science, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 227, Japan

Received May 2, 1994*

Abstract

A new class of phosphorylated nucleosides, i.e., adenosine $6-N$-phosphoramidate (6-N-AMP) and related derivatives, were synthesized in good yields via phosphitylation of the amino group of appropriately protected adenosine derivatives. In a similar manner, cytidine 4-N-phosphoramidate (4-N-CMP), guanosine $2-N$-phosphoramidate (2-N-GMP), and their diethyl ester derivatives were synthesized. These new compounds were characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR, UV, CD, IR, electrophoresis, and mass spectroscopy. The physical and chemical properties of these N-phosphorylated ribonucleoside derivatives have been studied in detail

Introduction

Functional groups of nucleic acids are modified in a variety of ways in living cells. Such modified species play essential roles in a series of biological reactions. ${ }^{1}$ Phosphorylation of the 5^{\prime} terminal hydroxyl of DNA/RNA is catalyzed by specific enzymes such as polynucleotide phosphorylase. ${ }^{2}$ The 3'-terminal aminoacylation of tRNA is one of the most prevalent enzymatic reactions in peptide synthesis. ${ }^{3}$ It is also well known that 2^{\prime} hydroxyl groups of RNA are methylated, ${ }^{4}$ ribosylated, ${ }^{5}$ and phosphorylated. ${ }^{6}$ On the other hand, a large number of nucleosides modified at their nucleobases have been discovered from biologically important nucleic acids such as tRNA and mRNA. ${ }^{7}$ For example, a wide variety of $6-N$-modified adenosine derivatives such as $6 \cdot N$-methyladenosine, ${ }^{8}$ 6-N,6-N-dimethyladenosine, ${ }^{8}$ 6- N -isopentenyladenosine, ${ }^{9}$ 6-N-(cis-4-hydroxyisopentenyl)adenosine, ${ }^{10}$ and $6-N$-(threoninocarbonyl)adenosine $\left(t^{6} A\right)^{11,12}$ have

[^0]been found. Many N-alkylated and N-acylated ribonucleosides have also been isolated as cytidine and guanosine derivatives. ${ }^{7}$
From the chemical point of view, the exo-amino groups of adenosine and cytidine have sufficient reactivities toward electrophiles such as acylating or phosphorylating reagents. Particularly, the cytidine base is so reactive that selective N -acylation without modification of other functional groups can be achieved. ${ }^{13,14}$ Todd first reported the chemical N-phosphorylation of cytidine with phosphorylating reagents. ${ }^{15}$ Letsinger has recently described a new method for oligodeoxyribonucleotide synthesis via the phosphoramidite approach by use of phosphoramidite building units having unprotected nucleobases. ${ }^{16,17}$ The free exocyclic amino groups of deoxyadenosine and deoxycytidine proved to be partially phosphitylated with activated phosphoramidite reagents. Hayakawa described a facile O selective phosphorylation of nucleosides without N-protection. ${ }^{18}$ In connection with this study, he prepared an O-protected N -diethoxyphosphorylated deoxyadenosine derivative with the help of HPLC.
These results imply that such chemically reactive amino functions should also be possible sites for biological phosphorylation. However, there are no examples of naturally occurring N -phosphorylated nucleosides despite the sufficient chemical reactivity of nucleobases accessible to phosphorylation. Why are N-phosphorylated nucleosides not found from biological sources to date? Is it impossible to phosphorylate the amino group of adenosine, cytidine, or guanosine via an enzymatic process? In connection with these simple questions, there are several precedents of $\mathrm{P}-\mathrm{N}$ bond containing natural products such as phosphocreatine, ${ }^{19}$ phosphoarginine, ${ }^{20}$ phosphoramidon, ${ }^{21}$ and dinogunellin. ${ }^{22}$ A more straightfoward $\mathrm{P}-\mathrm{N}$ bond containing nucleoside analog is an N-phosphoribosylated 3'-deoxyarabinosyladenine derivative (Agrocin 84) ${ }^{23,24}$ which was discovered as an antibiotic responsible for the biological control of crown gall by Kerr in 1977. Kerr's discovery strongly suggests that

[^1]Scheme 1

N-phosphorylation could not be ruled out as a possible biological reaction. In Kerr's paper, he synthesized N-phosphorylated adenosine ($6-N$-AMP) as a reference compound and suggested that N-phosphorylated nucleosides should have phosphoryl transfer potential as putative intermediates in certain phosphorylation cycles by enzymes in living systems. However, the details of the synthesis and properties of $6-N$-AMP were not described, and only its UV data were available. ${ }^{23}$ It is still unknown whether the $\mathrm{N}-\mathrm{P}$ bond of N -phosphorylated ribonucleosides is extremely unstable in living cells so that the presence of such N phosphorylated species cannot be detected even if they can be formed enzymatically. In general, the inherent instability of $\mathrm{P}-\mathrm{N}$ bond containing phosphoramidate derivatives has been noted. ${ }^{25}$

Here we have synthesized all three N-phosphorylated ribonucleosides involving N-phosphorylated cytidine (4-N-CMP) and guanosine ($2-N$-GMP) and $6-N$-AMP to unveil their unknown nature. In this paper we report for the first time convenient syntheses of these N-phosphorylated ribonucleosides with high purity and also describe fully their chemical and physicochemical properties.

Results and Discussion

Synthesis of Adenosine 6-N-Phosphoramidate and Its Derivatives. Phosphorylation of a properly protected adenosine derivative with a free amino group was examined. Tris($1,2,4$-triazolyl)phosphine oxide, prepared in situ from phosphorus oxychloride and triazole in the presence of $\mathrm{Et}_{3} \mathrm{~N}$, was allowed to react with $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-benzoyladenosine (1a) ${ }^{26}$ (Scheme 1) for 2 h , and the mixture was treated successively with 0.5 M triethylammonium hydrogen carbonate. Unexpectedly, only one of the triazolyl groups of 2a was selectively hydrolyzed to afford relatively stable

[^2]triethylammonium $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-benzoyladenosine $6-N-[(1,2,4-$ triazolyl)phosphoramidate] (3a) which showed a characteristic ${ }^{31} \mathrm{P}$ NMR resonance signal at -15.3 ppm in CDCl_{3}. It was noteworthy that compound 3 a could be purified by silica gel column chromatography and isolated in 80% yield. When $2^{\prime}, 3^{\prime}, 5^{\prime}$ -tri- O-acetyladenosine ($\mathbf{1 b})^{27}$ was employed as a starting material in place of 1a, the corresponding 6-N-[(1,2,4-triazolyl)phosphoramidate] 3b was formed, but could not be extracted with organic solvents from aqueous solution because of its high hydrophilicity. The triazolyl group of 3a was hydrolyzed by treatment with 80% acetic acid to give 6-N-phosphoramidate derivative 4 a in 89% yield (estimated by ${ }^{31} \mathrm{P}$ NMR). Unfortunately, compound 4 a gradually decomposed during removal of acetic acid by evaporation. Treatment of the crude mixture containing $4 a$ with aqueous ammonia afforded the desired product of $6-N$-AMP 5^{\prime} (ammonium salt) in an overall yield of 47% from $3 a$ (estimated by ${ }^{31}$ P NMR). When compound 3a was treated directly with aqueous ammonia, adenosine $6 \cdot N$-phosphorodiamidate (6) was obtained with a purity of 83% (estimated by ${ }^{31} \mathrm{P}$ NMR; $2.64 \mathrm{ppm}, \mathrm{D}_{2} \mathrm{O}$).

A more efficient route to 6-N-AMP was also explored using a highly reactive phosphoramidite, bis(2-cyanoethoxy) (N, N diisopropylamino)phosphine. This reagent allowed facile N phosphitylation with 1a in the presence of $1 H$-tetrazole to give the $6 \cdot N$-phosphitylated intermediate 7 a (Scheme 2). Compound 7a was oxidized with tert-butyl hydroperoxide to give a fully protected adenosine $6-\mathrm{N}$-[bis(2-cyanoethyl) phosphoramidate] (8a). It was, however, observed that 8 a was unstable and decomposed considerably during silica gel column chromatography. After screening several solvent systems for chromatog. raphy, this problem was finally overcome by addition of 0.2% acetic acid to the usual eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$. Thus, compound 8a could be isolated in pure form in a high yield of 94% without decomposition. This finding is of great importance since a route to a large scale synthesis of $6-N$-AMP 5 is now possible. The effect of acetic acid on the stability of 8a on the surface of silica gel is not clear. Debenzoylation of 8 a was performed by treatment with aqueous ammonia. Purification of 6-N-AMP 5 thus formed was done by gel filtration (Sephadex G10) followed by C 18 reversed-phase column chromatography. The desired product 6-N-AMP 5 was obtained in 91% yield as a disodium salt ${ }^{28}$ and
(27) Bredereck, H.; Martin, A. Chem. Ber. 1947, 80, 401.

Scheme 2

Scheme 3

characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR, UV, and CD spectroscopy, paper electrophoresis, HRMS spectrometry, and elementary analysis as will be discussed later. All data obtained showed that the purity of $6-N$-AMP 5 was more than 95% (see supplementary material).

The synthesis of a phosphorothioate analog of 6-N-AMP was attempted. The $6-N$-phosphitylated intermediate 7 a was treated with $N, N, N^{\prime}, N^{\prime}$-tetraethylthiuram disulfide (TETD) ${ }^{29}$ to give the corresponding phosphorothioamidate 9 a in 52% yield. However, deprotection of 9 a was unsuccessful when aqueous NH_{3} was employed. Since the 2-cyanoethyl group of the phosphorothioate analog 9 a was more stable than that of the corresponding 8 a , the unexpected $\mathrm{P}-\mathrm{N}$ bond cleavage proceeded faster than β-elimination of the 2 -cyanoethyl group.

Next, the synthesis of the diethyl ester 12 of $6-N$-AMP was examined. ${ }^{30} 2^{\prime}, 3^{\prime}, 5^{\prime}-\mathrm{Tri}-\mathrm{O}$-acetyladenosine $6-\mathrm{N}$ - [bis(1,2,4-triazolyl)phosphate] (2b), in situ prepared from 1b with tris(1,2,4triazolyl)phosphine oxide, was treated with excess EtOH, and the mixture was stirred for 2 h . After purification by silica gel column chromatography, the desired diethyl ester 11b was obtained in 43% yield from $\mathbf{1 b}$. When $\mathbf{1 b}$ was allowed to react with a mixture of diethyl phosphonate, carbon tetrachloride, and triethylamine, the phosphorylation proceeded very slowly and was completed in 2 days to give 11b in 38% yield. When diethyl phosphorochloridite was used as a phosphitylating reagent, the phosphitylation of 1 b was completed within 2 h . After oxidation with tert-butyl hydroperoxide, 11b was obtained in 91% yield. The phosphorothioate derivative 13b was also obtained in 52% yield from 1 lb by treatment of the common intermediate 10 b with elemental sulfur in CS_{2}.
The selective removal of the acetyl groups of 11 b was attempted by treatment with aqueous NH_{3}. However, slight degradation of the ethyl ester moiety was observed in TLC monitoring. Therefore, the phenoxyacetyl group was used in place of the acetyl group. A similar N-phosphitylation of $2^{\prime}, 3^{\prime}, 5^{\prime}$-Tris- O-(phenoxyacetyl)adenosine (1c) with diethoxy(N, N-diisopropylamino)-

[^3]phosphine followed by oxidation of the intermediate 10 c with tert-butyl hydroperoxide gave 11c in 81% yield. Thus, selective deacylation of 11 c could be performed under very mild conditions without decomposition of the ethyl ester moiety and afforded the diethyl ester 12 of $6-N$-AMP in 63% yield.

Synthesis of Cytidine 4-N-Phosphoramidate and Its Derivatives. A two-step N-phosphorylation of $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-benzoylcytidine (14a) (Scheme 3), prepared by the selective N-debenzoylation of $2^{\prime}, 3^{\prime}, 5^{\prime}-O-4-N$-tetrabenzoylcytidine, ${ }^{31}$ was carried out by the use of bis(2-cyanoethoxy)(N, N-diisopropylamino)phosphine as the phosphoramidite reagent in a manner similar to that described in the case of 8 a . Thus, $4-N$-[bis(2-cyanoethoxy)phosphoryl]cytidine derivative 16 was synthesized in 61% yield. Deprotection of 16 with aqueous NH_{3} gave cytidine $4-\mathrm{N}$-phosphoramidate 17 in 76% yield.
$2^{\prime}, 3^{\prime}, 5^{\prime}$-Tris- O-(phenoxyacetyl)cytidine ($\mathbf{1 4 c}$) was preferable as a starting material for the synthesis of the diethyl ester 20 of $4-N$-CMP 17. It was, however, difficult to prepare 14 c by the selective N-deacylation of the corresponding peracylated derivative. Therefore, the trimethylsilyl (TMS) group was used as a transient protective group for the hydroxyl function. ${ }^{32,33}$ Cytidine was treated with hexamethyldisilazane to give $2^{\prime}, 3^{\prime}, 5^{\prime}$-tris- 0 (trimethylsilyl)cytidine (14b) quantitatively. Further one-pot reaction of 14 b with diethoxy (N, N-diisopropylamino) phosphine was carried out in the presence of 1 H -tetrazole in $\mathrm{CH}_{3} \mathrm{CN}$. It was found that the TMS ether bonds of $\mathbf{1 4 b}$ were sufficiently stable during $1 H$-tetrazole-mediated phosphitylation. After oxidation with tert-butyl hydroperoxide, the TMS group was hydrolyzed by the addition of water to give the diethyl ester 20 of $4-N$-CMP in 75% yield from cytidine.

Synthesis of Guanosine 2-N-Phosphoramidate and Its Derivatives. It is well known that the amino group of guanosine is less reactive toward acylating reagents. In contrast to this fact, the lactam moiety of guanosine is reactive with acyl chlorides, ${ }^{34,35}$
(31) This compound was prepared from $4-N-2^{\prime}, 3^{\prime}, 5^{\prime}-O$ tetrabenzoylcytidine by using ZnBr_{2} as an N-selective debenzoylating reagent: Kierzek, R.; Ito, H.; Bhatt, R.; Itakura, K. Tetrahedron Lett. 1981, 22, 3761.
(32) Ti, G. S.; Gaffney, B. L.; Jones, R. A. J. Am. Chem. Soc. 1982, 104, 1316.
(33) McLaughlin, L. W.; Piel, N.; Hellmann, T. Synthesis 1985, 322.
(34) Kamimura, T.; Tsuchiya, M.; Koura, 'K.; Sekine, M.; Hata, T. Tetrahedron Lett. 1983, 24, 2775.

Scheme 4

Table 1. ${ }^{1} \mathrm{H}$ NMR Chemical Shifts (ppm) of N-Phosphorylated Ribonucleosides in $\mathrm{D}_{2} \mathrm{O}$

	$1^{\prime}-\mathrm{H}$	2^{\prime} - H	3'-H	$4^{\prime} \cdot \mathrm{H}$	5'-H	$5^{\prime \prime}-\mathrm{H}$	2-H	8-H	5-H	6-H
adenosine	5.99	4.74	4.38	4.25	3.87	3.78	8.14	8.26		
5'AMP	6.04	4.77	4.46	4.35	4.01	4.01	8.12	8.55		
6-N-AMP 5	6.00	4.71	4.37	4.23	3.86	3.76	8.32	8.24		
6- N-AMP-Et (12)	6.00	4.76	4.40	4.20	3.88	3.80	8.43	8.41		
cytidine	5.84	4.25	4.15	4.08	3.88	3.76			5.99	7.79
5'-CMP	6.01	4.36	4.34	4.25	4.04	3.99			6.14	8.13
4-N-CMP 17	5.90	4.31	4.19	4.11	3.91	3.79			6.63	7.90
4- N-CMP-Et (20)	5.83	4.26	4.13	3.84-3.92		3.76			6.25	8.01
guanosine	5.86	4.69	4.36	4.19	3.84	3.76		7.95		
5'GMP	5.93	4.76	4.50	4.33	4.02	4.02		8.20		
2-N-GMP 25	5.88	4.70	4.38	4.18	3.86	3.78		7.96		
2- N-GMP-Et (28)	5.96	4.83	4.46	4.16	3.89	3.79		8.09		

phosphorylating reagents, ${ }^{36,37}$ phosphitylating reagents, ${ }^{38,39}$ sulfonyl chlorides, ${ }^{36,37,40,41}$ and silyl chlorides ${ }^{37}$ to give $6 . O$-modified guanosine derivatives. When $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetylguanosine (21) ${ }^{27}$ was treated with an equimolar amount of diethoxy $(N, N$ diisopropylamino) phosphine in the presence of 1 H -tetrazole, no reaction was observed by TLC analysis. However, ${ }^{31}$ P NMR monitoring of the reaction indicated that phosphitylation occurred at the $6-O$-position. ${ }^{42}$ The $6-O$-phosphitylated derivative rapidly decomposed on TLC plates, and the product could not be detected by TLC analysis. In order to protect the 6 - O-position and increase the nucleophilicity of the amino group of guanosine, we converted 21 to the 6-O-TMS derivative 22 by treatment with trimethylsilyl chloride in pyridine (Scheme 4). To the resulting mixture containing 22 was added diethoxy(N, N-diisopropylamino) phosphine or bis(2-cyanoethoxy)(N, N-diisopropylamino)phosphine. ${ }^{43}$ The phosphoramidite reagent was converted effectively to a more reactive phosphorus chloridite intermediate by the in situ reaction catalyzed by pyridinium hydrochloride generated in the initial reaction of 21 with trimethylsilyl chloride. In this case, N phosphitylation proceeded smoothly to give the phosphite intermediate $\mathbf{2 3}$ or $\mathbf{2 6}$ within 1 h. Successive oxidation of $\mathbf{2 3}$ and 26 with tert-butyl hydroperoxide afforded the dialkyl esters 24 and

[^4]27 of $2-N$-phosphorylated guanosine in 27% and 45% yields, respectively. The relatively low yields were attributed to the inherent instability of these compounds during silica gel column chromatography since TLC suggested that each reaction provided a major product to a degree of more than 80%. Treatment of the bis(2-cyanoethyl) ester $\mathbf{2 4}$ with aqueous NH_{3} resulted in a highyield synthesis of $2-N$-GMP 25 in 99% yield. The diethyl ester 28 of $2-N$-GMP was also obtained in 86% yield by the selective hydrolysis of 27.
Characterization of \mathbf{N}-Phosphorylated Ribonucleosides. ${ }^{1} \mathrm{H}$ NMR. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 (disodium salt) in $\mathrm{D}_{2} \mathrm{O}$ basically resembles that of adenosine. The signals of the $8-\mathrm{H}$ and $2-\mathrm{H}$ protons are characteristic; the $8-\mathrm{H}$ signal (8.24 ppm) appears at slightly higher field than the $2-\mathrm{H}$ signal (8.32 ppm). The assignment of these signals was confirmed by the observation of the strong NOE between the $8-\mathrm{H}$ and $\mathrm{l}^{\prime}-\mathrm{H}$ protons. The large downfield shift of the 8-H proton may be attributed to the electronwithdrawing effect of the $6-N$-phosphoryl group. Further, the acidity of the $8-\mathrm{H}$ proton is enhanced for the same reason. In fact, the $8-\mathrm{H}$ proton underwent gradual deuterium exchange in $\mathrm{D}_{2} \mathrm{O}$. A similar tendency was observed for the diethyl ester derivative 12. The chemical shifts of $6-N$-phosphorylated adenosine derivatives are summarized in Table 1 along with those of adenosine and 5^{\prime}-AMP as reference compounds.

In the case of $4-N$-phosphorylated cytidine derivatives, the chemical shifts of the sugar protons were similar to those of cytidine (Table 1). Characteristic features of the ${ }^{1} \mathrm{H}$ NMR spectra of 17 and 20 were the large downfield shifts of the $5-\mathrm{H}$ and $6-\mathrm{H}$ protons. The same effect has been cited for $4-\mathrm{N}$-acylated cytidine derivatives. ${ }^{44}$
In contrast to the above case, 2-N-phosphorylated guanosine

[^5] J. A.; Yokoyama, S. Nucleosides Nucleotides 1992, 11, 759.

Table 2, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ Coupling Constants (Hz) of N -Phosphorylated Ribonucleosides in $\mathrm{D}_{2} \mathrm{O}$

	$1^{\prime}, 2^{\prime}$	$2^{\prime}, 3^{\prime}$	$3^{\prime}, 4^{\prime}$	$4^{\prime}, 5^{\prime}$	$4^{\prime}, 5^{\prime \prime}$	$5^{\prime}, 5^{\prime \prime}$
adenosine	6.3	5.3	3.3	2.6	3.6	-12.9
5^{\prime} - $\mathrm{AMP}^{\text {a }}$	5.9	5.0	3.6	3.2	3.2	b
6-N-AMP 5	5.9	5.0	3.6	2.6	3.3	-12.9
6-N-AMP-Et (12)	5.9	5.0	3.6	2.6	3.6	-12.9
cytidine	4.0	4.3	5.9	2.6	4.3	-12.9
5^{\prime}-CMP ${ }^{\text {a }}$	4.4	4.5	4.6	2.5	2.9	-12.0
4-N-CMP 17	3.6	5.3	6.3	2.8	4.6	-12.9
4- N -CMP-Et (20)	3.6	4.6	b	b	4.0	-12.9
guanosine	5.8	5.6	4.0	3.0	4.0	-12.9
5^{\prime}-GMP ${ }^{\text {a }}$	6.0	5.0	3.7	3.4	3.4	b
2-N-GMP 25	5.3	5.6	4.3	3.0	3.3	-12.9
2-N-GMP-Et (28)	5.0	5.3	5.3	3.6	5.3	-12.5

${ }^{a}$ See ref 49. ${ }^{b}$ Individual coupling constants could not be determined.
derivatives 25 and 28 showed ${ }^{1} \mathrm{H}$ NMR spectra approximate to that of guanosine even for the guanine base protons (Table 1). This indicates that there were no significant effects of the $2-\mathrm{N}$ phosphoryl group on the chemical shifts of the guanine base protons.

Conformation of Ribose Residues Concerning the Ratio of $\mathbf{2}^{\prime}$ C - and 3'-C-endo Conformers. The effect of the phosphoryl group of N-phosphorylated ribonucleosides on the conformation of the ribose residues was examined. The proton-proton coupling constants of N -phosphorylated nucleoside derivatives are summarized in Table 2 along with those of the corresponding nucleosides and nucleoside 5^{\prime}-monophosphates as reference compounds. In general, the $J_{1^{\prime}, 2^{\prime}}$ value of the ribose moiety reflects the ratio of 2^{\prime}-C-endo to 3^{\prime}-C-endo forms which is calculated by the following equation: [2^{\prime}-C-endo (\%) $=J_{1^{\prime}, 2^{\prime}} /\left(J_{1^{\prime}, 2^{\prime}}+J_{3^{\prime}, 4^{\prime}}\right) \times$ 100 , where $J_{1^{\prime}, 2^{\prime}}+J_{3^{\prime}, 4^{\prime}}$ is nearly 10 Hz in general. ${ }^{45}$ The $J_{1^{\prime}, 2^{\prime}}$ values of 5 and 12 in $\mathrm{D}_{2} \mathrm{O}$ were 5.9 Hz each. The $J_{1^{\prime}, 2^{\prime}}$ values of adenosine were reported to be $5.8 \mathrm{~Hz}^{46}$ and $6.1 \mathrm{~Hz}{ }^{47}$ and that of adenosine 5^{\prime}-monophosphate was reported to be $5.9 \mathrm{~Hz} .{ }^{48}$ Therefore, the ribose puckering of the N-phosphorylated adenosines 5 and 12 is unaffected by the presence of a phosphate or a diethoxyphosphoryl group. The $J_{1^{\prime}, 2^{\prime}}$ values of the N. phosphorylated guanosine derivatives 25 and 28 in $\mathrm{D}_{2} \mathrm{O}$ were 5.3 and 5.0 , respectively. The reported $J_{1^{\prime}, 2^{\prime}}$ values of guanosine, guanosine 2^{\prime}-phosphate, and guanosine 5^{\prime}-phosphate were 5.8 , 5.2 , and 6.0 Hz , respectively..48,49 These data suggested that the N-phosphoryl group leads to a small shift to the 3^{\prime}-C-endo conformer to the same degree as the 2^{\prime}-phosphate group. On the other hand, the $J_{1^{\prime}, 2^{\prime}}$ values of the N-phosphorylated cytidine derivatives 17 and 20 were 3.6 Hz each. The $J_{1^{\prime}, 2^{\prime}}$ values of cytidine and cytidine 5^{\prime}-phosphate in $\mathrm{D}_{2} \mathrm{O}$ were 4.0 and 4.1 Hz , respectively. ${ }^{49}$ It is apparently concluded that the $J_{1^{\prime}, 2^{\prime}}$ value of the 3^{\prime}-C-endo conformer was increased by approximately 0.5 Hz by addition of the N-phosphoryl or diethoxyphosphoryl group. This result is interesting since Yokoyama reported that the N-acetyl group attached to $2^{\prime}-O$-methylcytidine has a significant effect on the ratio of two conformers in favor of the 3^{\prime}-C-endo conformer. ${ }^{44}$ This may be due to the antibonding lobe of the π^{*} orbital at 6 -C of the 5-6 double bond contributing more effectively to intramolecular interaction with the lobe in which the lone pair electrons of the furanose ring are present. ${ }^{44}$
${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathbf{P}$ NMR. The ${ }^{13} \mathrm{C}$ NMR chemical shifts of the N-phosphorylated ribonucleoside derivatives are summarized in Table 3 along with those of the corresponding nucleosides and nucleoside 5^{\prime}-monophosphates as reference compounds. ${ }^{50,51}$ In general, there were no significant effects of the N-phosphoryl

[^6]group on the chemical shifts of the sugar carbons. In the case of N-phosphorylated guanosine derivatives 25 and 28 , the resonance signal of $2-\mathrm{C}$ was observed as a doublet which was due to the $\mathrm{P}-\mathrm{C}$ coupling between the phosphorus and the carbon through two bonds. However, such P-C couplings were not observed in the case of $\mathbf{5}, \mathbf{1 2}, \mathbf{1 7}$, and 20.

The ${ }^{31} \mathrm{P}$ NMR spectrum of each of the N-phosphorylated ribonucleoside derivatives showed the sole signal in the region around -3 to +4 ppm . Generally, the signals of the diethyl ester derivatives appeared in the upfield region.

UVSpectroscopy. The ultraviolet spectra of N-phosphorylated ribonucleosides (5, 17, and 25) and their diethyl esters (12, 20, and 28) at three different pH regions are shown in Figure 1 and Table 4. The pH profiles of the three N-phosphorylated ribonucleosides 5,17 , and 25 are essentially similar to those of the corresponding parent ribonucleosides. Particularly in the case of the guanosine derivative $\mathbf{2 5}$, the $\lambda_{\text {max }}$ values at the three pH regions are preserved but shoulders around 267 nm , which are observed in the case of guanosine, are considerably weakened. However, the $\lambda_{\text {max }}$ peak of the adenosine derivative 5 at pH 4 is shifted to longer wavelength by $6-7 \mathrm{~nm}$ compared to that of adenosine. The intensity of 5 at $\lambda_{\max }$ varied remarkably at pH 7 and 13. The ratio of the ϵ values of 5 at pH 13 and 7 is 1.29 . Contrary to this fact, adenosine has relatively constant ϵ values ($\pm 5 \%$) at a wide range of $\mathrm{pH}(1.5-14)$. In the case of cytidine, the $\lambda_{\text {max }}$ peak of 17 at pH 7 is shifted to longer wavelength by 3 nm compared with that of cytidine. The UV spectra of $4-\mathrm{N}$ acetylcytidine in acidic, neutral, and alkaline solutions are quite different from those of $17 .{ }^{52}$ These results suggest that the phosphate group on the nitrogen of the bases served not as an acyl type of group but as a substituent similar to an alkyl group like a methyl group.
CD Spectroscopy. The circular dichroism spectra of N. phosphorylated ribonucleosides are shown in Figure 2. It is well established that CD spectroscopy of nucleic acid monomers is particularly sensitive to the conformation around the glycosyl bond. ${ }^{53}$ The CD spectra of $6 \cdot N$-phosphorylated adenosine derivatives 5 and 12 were similar to those of adenosine. ${ }^{53}$ These spectra showed the positive and negative Cotton effects around 270 and 220 nm , respectively (Figure 2A,B). These results suggested the $6-N$-phosphorylated adenosine derivatives have the same syn conformation around the glycosyl bond as adenosine and 5^{\prime}-AMP. ${ }^{53}$ In the case of the diethyl ester 12, a relatively strong positive Cotton effect was observed around 235 nm which was considerably weak in 6- N-AMP 5.

In the case of 4-N-phosphorylated cytidine derivatives 17 and 20, the CD spectra showed the negative and positive Cotton effects around 220 and 275 nm , respectively (Figure 2C,D). These spectra are similar to those of cytidine and 5^{\prime}-CMP. ${ }^{53}$ Particularly, in the case of the diethyl ester 20, a very weak positive Cotton effect was observed as a shoulder around 240 nm .

The CD spectra of $2-N$-phosphorylated guanosine derivatives showed strong positive and weak negative Cotton effects around 215 and 250 nm , respectively (Figure 2E,F). Guanosine and 5^{\prime}-GMP have the same Cotton effects around a similar wavelength range. ${ }^{53}$
Generally, the above results suggest that the N-phosphoryl group did not affect the orientation of the purine and pyrimidine bases. The CD spectral data of the N-phophorylated ribonucleosides are summarized in Table 5.
(51) Dorman, D. E.; Roberts, J. D. Proc. Natl. Acad. Sci. U.S.A. 1970, 65,19 .
(52) Van Montagan, M.; Stockx, J. Arch. Int. Physiol. Biochiem. 1965, 73,158.
(53) (a) Sprecher, C. A.; Johnson, Jr., W. C. Biopolymers 1977, 16, 2243. (b) Stewart, R. F.; Davidson, N. J. Chem. Phys. 1963, 39, 225. (c) Stewart, R. F.; Jensen, L. H. Ibid. 1964, 40, 2071. (d) Callis, P. R.; Fanconi, B.; Simpson, W. T. J. Am. Chem. Soc. 1971, 93, 6679. (e) Eaton, W. A.; Lemis, T. P. J. Chem. Phys, 1970, 53, 2164. (f) Callis, P. R.; Simpson, W. T. J. Am. Chem. Soc. 1970, 92, 3593.

Table 3. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts (ppm) of N-Phosphorylated Ribonucleosides

	$1^{\prime}-\mathrm{C}$	$2^{\prime}-\mathrm{C}$	$3^{\prime} \cdot \mathrm{C}$	$4^{\prime}-\mathrm{C}$	5'-C	2-C	4-C	5-C	6-C	8-C	solvent
adenosine ${ }^{\text {a }}$	88.2	73.7	70.9	86.2	61.9	152.6	149.3	119.6	156.3	140.2	DMSO
5^{\prime} - $\mathrm{AMP}^{\text {b }}$	87.0	70.5	74.5	84.2	63.5	152.4	148.4	118.0	155.0	139.9	$\mathrm{H}_{2} \mathrm{O}$
6- N-AMP 5	91.1	76.3	73.3	88.4	64.2	155.4	150.9	123.1	157.2	143.0	$\mathrm{D}_{2} \mathrm{O}$
6- N-AMP-Et (12)	91.1	76.5	73.2	88.5	64.1	154.2	152.8	125.0	154.5	145.2	$\mathrm{D}_{2} \mathrm{O}$
cytidine ${ }^{\text {a }}$	90.1	70.6	75.1	85.3	61.9	156.9	166.7	95.7	142.8		DMSO
5^{\prime}-CMP ${ }^{\text {b }}$	89.1	69.7	74.3	83.3	63.3	157.5	166.2	95.6	141.8		$\mathrm{H}_{2} \mathrm{O}$
4-N-CMP 17	93.1	71.9	76.6	86.4	63.5	160.2	c	99.7	144.5		$\mathrm{D}_{2} \mathrm{O}$
4- N-CMP-Et (20)	93.3	71.8	76.9	86.7	63.2	157.1	166.0	101.0	145.7		$\mathrm{D}_{2} \mathrm{O}$
guanosine ${ }^{\text {a }}$	87.3	71.5	74.9	86.4	62.2	154.6	152.3	117.5	157.8	136.9	DMSO
$5^{\prime}-\mathrm{GMP}^{\text {b }}$	87.0	70.6	74.3	84.1	63.9	153.6	151.0	115.7	158.3	137.3	$\mathrm{H}_{2} \mathrm{O}$
$2-N$-GMP 25	90.5	73.0	76.3	87.8	64.0	154.1	155.3	119.5	161.2	140.6	$\mathrm{D}_{2} \mathrm{O}$
2- N-GMP-Et (28)	91.1	72.7	76.0	87.4	64.1	151.4	152.6	124.1	161.4	142.2	$\mathrm{D}_{2} \mathrm{O}$

${ }^{a}$ See ref $50 .{ }^{b}$ See ref $51 .{ }^{c}$ Chemical shift could not be determined.

Figure 1. UV spectra of N-phosphorylated ribonucleosides at three different pH regions: (A) 6-N-AMP 5, (B) 6-N-AMP-Et (12), (C) 4-N-CMP 17, (D) 4-N-CMP-Et (20), (E) 2-N-GMP 25, (F) 2-N-GMP-Et (28).

Infrared Spectroscopy. Next, the IR spectroscopic studies of N-phosphorylated ribonucleoside were examined. Kerr suggested that in the IR spectrum of Agrocin 84 a band at $1225 \mathrm{~cm}^{-1}$ is due to the $\mathrm{P}-\mathrm{O}$ stretching vibration of the phosphoramidate group. ${ }^{24}$ On the other hand, Hatano reported the IR spectrum of dinogunellin, a $\mathrm{P}-\mathrm{N}$ bond containing toxic phospholipid, showing that a band around $820-1040 \mathrm{~cm}^{-1}$ is due to the $\mathrm{P}-\mathrm{N}$ stretching vibration of the phosphoramidate group. ${ }^{22}$ In the case of $6-N$. AMP 5, the IR spectra exhibited a strong band at $980 \mathrm{~cm}^{-1}$ which may correspond to the $\mathrm{P}-\mathrm{N}$ stretching vibration of the phosphoramida te group. It is noteworthy that the band at about 1650 cm^{-1}, due to the $\mathrm{N}-\mathrm{H}$ deformation vibration of the amino group of adenine, ${ }^{54}$ was considerably weakened in the $6 \cdot N$-phosphorylated adenosine derivatives 5 and 12. In the case of $4-N$. phosphorylated cytidine derivatives 17 and $\mathbf{2 0}$, the bands at about

[^7]$1645 \mathrm{~cm}^{-1}$ which are due to the $\mathrm{N}-\mathrm{H}$ deformation vibration of the amino group of cytosine ${ }^{61}$ were also weakened in the $4-\mathrm{N}$ phsphorylated cytidine derivatives. However, the absorption bands corresponding to the $\mathrm{P}-\mathrm{N}$ stretching vibration of the phosphoramidate group of these compounds could not be identified because these bands overapped with other strong bands. In the case of $2-N$-phosphorylated guanosine derivatives 25 and 28, a characteristic band was observed around $960-965 \mathrm{~cm}^{-1}$ which may be due to the P-N or P-O stretching vibration of the phosphoramidate group.

Paper Electrophoresis. Paper electrophoresis of N-phosphorylated ribonucleosides and related compounds was performed at various pH regions. These results are shown in Figure 3. Adenosine derivatives behave in a manner similar to that of cytidine at a whole range of $\mathrm{pH} 3-10$. At lower pH values of 3 and 3.5, N-phosphorylated species 5 and 17 moved remarkably

Table 4. UV Spectral Data of N-Phosphorylated Ribonucleosides

	pH	$\lambda_{\max }(\mathrm{nm})$	$\epsilon_{\max } \times 10^{-3}$	$\lambda_{\min }(\mathrm{nm})$	$\epsilon_{\min } \times 10^{-3}$
6- N-AMP 5	4.0	263.0	15.9	249.0	12.2
	7.0	263.0	16.6	228.5	2.5
	13.0	264.5	21.4	230.0	4.7
6-N-AMP-Et (12)	1.0	259.5	12.9	226.5	3.3
	7.0	259.5	11.5	226.5	2.6
	13.0	273.5	18.4	235.0	2.3
4- N-CMP 17	1.0	286.5	12.8	247.5	1.8
	7.0	274.0	9.6	226.0	4.7
	13.0	275.0	10.8	226.5	5.7
4- N-CMP-Et (20)	1.0	283.0	7.6	250.0	2.4
	7.0	280.5	7.1	251.0	3.0
	13.0	275.5	9.4	230.0	4.8
2- N-GMP 25	1.0	256.0	11.1	225.5	2.3
	7.0	254.0	12.1	224.5	2.4
	13.0	258.0	8.8	233.0	3.7
2- N-GMP-Et (28)	1.0	255.5	11.8	222.5	2.0
	7.0	253.0	11.4	221.5	2.3
	13.0	260.5	12.9	232.5	3.8

Figure 2. CD spectra of N-phosphorylated ribonucleosides: (A) $6-N$ AMP 5 at pH 7.0, (B) 6- N-AMP-Et (12) at pH 7.0, (C) 4- N-CMP 17 at pH 7.0, (D) 4- N-CMP-Et (20) at pH 6.2, (E) $2-N$-GMP 25 at pH 6.6 , (F) $2-N$-GMP-Et (28) at pH 6.0 .

Table 5. CD Spectral Data of N-Phosphorylated Ribonucleosides

	$\lambda_{1}(\mathrm{~nm})$	$[\theta]_{\mathrm{i}_{1}} \times 10^{-4}$	$\lambda_{2}(\mathrm{~nm})$	$[\theta]_{\lambda 1} \times 10^{-4}$
6- N-AMP 5	271.2	-1.36	210.4	0.41
6- N-AMP-Et (12)	265.8	-0.72	219.6	0.47
4- N-CMP 17	275.8	1.68	219.6	-1.82
4- N-CMP-Et (20)	276.4	1.19	218.8	-1.71
2- N-GMP 25	250.8	-0.48	251.2	1.19
2- -GMP-Et (28)	246.6	-0.21	213.6	0.75

to the anode compared to PA and pC , while adenosine and cytidine moved in the reverse direction. These results indicate that 5 and 17 are not protonated in these pH regions. Interestingly, we observed that the diethyl ester 28 moved slowly toward the anode, showing a mobility of 0.24 relative to pG. Under these conditions, guanosine did not move significantly from the origin. This is

Figure 3. Paper electrophoresis of N-phosphorylated ribonucleosides at different pH regions: (A) adenosine, 6-N-AMP 5, and 6- N-AMP-Et (12), (B) cytidine, 4- N-CMP 17, and $4-N$-CMP-Et (20), (C) guanosine, 2- N-GMP 25, and 2- N-GMP-Et (28). The mobilities of the compounds were estimated relative to those of the corresponding parent nucleoside 5^{\prime}-monophosphates as 1.0 .
ascribed to partial dissociation of either the 2 -phosphorylated NH group or the lactam NH at position 3 at pH 7.
Evidence of the presence of the $2^{\prime}, 3^{\prime}$-cis-diol groups in 5 and 12 was obtained by paper electrophoresis in a borate buffer (pH 9.0). The neutral nucleoside 12 and adenosine comigrated with each other. In a similar manner, 5 and pA comigrated in proportion to the mobilities observed at pH 9 (phosphate buffer) (data not shown).
Solubility. N-Phosphorylated compounds are almost freely soluble in water. This is one of the characteristic features of N-phosphorylated ribonucleotides. This is in clear contrast to the fact that cytidine 5^{\prime}-phosphate has a poor solubility in water and guanosine 5^{\prime}-monophosphate tends to cause self-aggregation in water. Even N-diethoxyphosphorylated ribonucleosides 12, 20 , and 28 were also soluble in water. On the other hand, the corresponding N-acetylated ribonucleosides have less solubility in water so that they are often recrystalized from water. The great solubility of N-phosphorylated ribonucleosides in water is explained by the $\mathrm{P}(\mathrm{O}) \mathrm{P}(\mathrm{OH})_{2}$ or $\mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}$ function increasing the hydrophilicity due to sites accessible to hydrogen bonding with water molecules.

Stability of \mathbf{N}-Phosphorylated Ribonucleosides. In general, N-phosphorylated ribonucleosides $5,12,17,20,25$, and 28 were quite stable under basic conditions such as 0.1 M NaOH and concentrated NH_{3} for several days. On the contrary, compounds

Table 6. Stability of N-Phosphorylated Ribonucleosides ${ }^{a}$

${ }^{a}$ All reactions were carried out at room temperature.

5,17 , and 25 gradually decomposed in 0.1 M HCl . The diethyl esters 12, 20, and 28 were more stable than the corresponding unesterified phosphoramidates both in 0.1 M HCl and in 80% acetic acid. These results are summarized in Table 6. Compound $\mathbf{5}$ is sufficiently stable in 0.1 M ammonium acetate. However, the reversed-phase HPLC profile always exhibited two peaks corresponding to adenosine and 5 in a ca. 1:1 ratio. Therefore, it was impossible to monitor the reaction or stability of 5 by reversed-phase HPLC using ammonium acetate buffer.

Conclusion

The present method for the synthesis of a new class of phosphorylated nucleosides, adenosine $6-N$-phosphoramidate (6-N-AMP), cytidine $4-N$-phosphoramidate (4- N-CMP), guanosine $2-N$-phosphoramidate ($2-N$-GMP), and their diethyl ester derivatives enabled us to obtain these compounds on a large scale with high purity. The new N-phosphorylated ribonucleosides prepared here would be useful as various kinds of substrates such as inhibitors in certain enzyme reactions or phosphoryl transfer reactions. We have obtained preliminary results of antivirus activities and mutagenicity by N -phosphorylated ribonucleosides. These results will be reported elsewhere. Further, the present method for the preparation of the N-phosphorylated nucleosides can be applied to the introduction of various functional groups such as reporter groups, photoreactive reagents, intercalators, DNA cleaving reagents, etc. via the N-phosphoryl group to the adenine, cytosine, or guanine base. These functionalized nucleosides can be incorporated into the specific site of oligonucleotides by chemical synthesis. The present results concerning the stability of the N-phosphorylated nucleosides suggested that the N phosphoryl groups can be removed under acidic conditions. Therefore, it is possible to regenerate the amino group from the functionalized phosphoryl groups. The unique characteristics of the N-phosphorylated nucleosides would enable development of a wide variety of applications in nucleic acid chemistry.

Experimental Section

General Procedures, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeCN were distilled from CaH_{2} after being refluxed for several hours, and stored over molecular sieves 4A. Pyridine was distilled after being refluxed over p-toluenesulfonyl chloride for several hours, redistilled from CaH_{2}, and stored over molecular sieves 4 A . tert-Butyl hydroperoxide (containing 20% di-tert-butyl peroxide) was purchased from Merck \& Co. Inc. $N, N, N^{\prime}, N^{\prime}$-Tetraethylthiuram disulfide was purchased from Tokyo Kasei Inc. ${ }^{1} \mathrm{H}$ NMR spectra were obtained at 270 MHz on a JEOL-EX- 270 spectrometer with tetramethylsilane as an internal standard in CDCl_{3} and with sodium 3-(trimethylsilyl)propanesulfonate as an external standard in $\mathrm{D}_{2} \mathrm{O} .{ }^{13} \mathrm{C}$ NMR spectra were obtained at 67.8 MHz on a JEOL-EX-270 spectrometer with tetramethylsilane as an internal standard. ${ }^{31}$ P NMR spectra were obtained at 109.25 MHz on a JEOL-EX-270 spectrometer using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as an external standard. UV spectra were recorded on a Hitachi 220A spectrophotometer. IR spectra were obtained on a Hitachi $260-50$. CD spectra were obtained on a JASCO J-500C spectrometer at concentrations of $0.8-1.5 \mathrm{mM}$ in water. Paper electrophoreses were carried out using 0.075 M morpholinium acetate buffer (pH 3.5) at 1500 V for $1.5 \mathrm{~h}, 0.05 \mathrm{M}$ ammonium acetate buffer (pH 7.0) at 1200 V for $1.3 \mathrm{~h}, 0.1 \mathrm{M}$ Tris- HCl buffer (pH 9.0) at 1500 V for 1.5 h , boric acid buffer (pH 9.0) at 1200 V for 1 h , and $0.05 \mathrm{M} \mathrm{NaHCO}_{3}$ buffer (pH 10.0) at 1200 V for 1.5 h . The mobilities of the compounds were calculated relative to those of the corresponding parent nucleoside 5^{\prime}-monophosphates. Thin-layer chromatography was performed on
precoated glass plates of Kieselgel $60 \mathrm{~F}_{254}$ (Merck, No. 5715). Silica gel column chromatography was carried out using Wakogel C-200. Reveredphase column chromatography was performed using Waters Prep-Pak CI8.
$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{5}^{\prime}$-Tri-Obenzoyladenosine (1a). Adenosine ($0.535 \mathrm{~g}, 2 \mathrm{mmol}$) was dried by repeated coevaporation with dry pyridine and finally suspended in dry pyridine (20 mL). To the suspension were added benzoic anhydride ($2.26 \mathrm{~g}, 10 \mathrm{mmol}$) and 4 -(N, N-dimethylamino) pyridine (0.061 $\mathrm{g}, 0.05 \mathrm{mmol}$), and the mixture was stirred at room temperature (rt) for 2 h . The mixture was concentrated to half-volume, diluted with CHCl_{3} and washed three times with $5 \% \mathrm{NaHCO}_{3}(\mathrm{aq})$, and the aqueous layer was back-extracted with CHCl_{3}. The organic layer and washings were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness under reduced pressure. The residue was applied to a silica gel column. Chromatography was performed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, applying a gradient of methanol ($1-1.5 \%$). The fractions containing la were combined and concentrated to give $1 \mathrm{a}(1.136 \mathrm{~g}, 98 \%)$ as a colorless foam. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of this product were identical to those of the authentic material. ${ }^{27}$
$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{5}^{\prime}$-Tris- \mathbf{O} (phenoxyacetyl)adenosine (1c). Adenosine (0.267 g , 1 mmol) was dried by repeated coevaporation with dry pyridine and finally suspended in dry pyridine (10 mL). To the suspension was added phenoxyacetic anhydride ($1.43 \mathrm{~g}, 5 \mathrm{mmol}$), and the mixture was stirred at rt for 10 min . The reaction was quenched with water, and the mixture was concentrated to dryness under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed three times with $5 \% \mathrm{NaHCO}_{3}(\mathrm{aq})$, and the aqueous layer was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer and washings were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to dryness. The residue was applied to a silica gel column. Chromatography was performed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, applying a gradient of methanol ($1.5-2.5 \%$). The fractions containing 1c were combined and concentrated to give 1c ($0.599 \mathrm{~g}, 89 \%$) as a colorless foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.41-4.69\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of Pac, $4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$, and $\left.5^{\prime \prime} \cdot \mathrm{H}\right), 5.76$ $\left(2 \mathrm{H}, \mathrm{brs}, \mathrm{NH}_{2}\right), 5.83\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=4.3 \mathrm{~Hz}, J_{3^{\prime}, 2^{\prime}}=5.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.06$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=5.6 \mathrm{~Hz}, 1-\mathrm{H}\right), 6.15^{\prime}\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 1^{\prime}}=J_{2^{\prime}, 3^{\prime}}=5.6 \mathrm{~Hz}, 2^{\prime} \cdot \mathrm{H}\right)$, $6.78-7.03(9 \mathrm{H}, \mathrm{m}, 3,4,5-\mathrm{H}$ of Ph$), 7.19-7.33(6 \mathrm{H}, \mathrm{m}, 2,6-\mathrm{H}$ of Ph), 7.88 $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.33(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 63.4\left(5^{\circ} \cdot \mathrm{C}\right), 64.6$, $64.7,65.0\left(\mathrm{CH}_{2}\right.$ of Pac$), 71.3\left(3^{\prime}-\mathrm{C}\right), 73.2\left(2^{\prime}-\mathrm{C}\right), 79.8\left(4^{\prime}-\mathrm{C}\right), 85.8\left(1^{\prime}-\right.$ C), 114.4, 114.5, 114.5 (2,6-C of Ph), 119.8 (5-C), 121.9, 121.9, 122.0 (4-C of Ph), 129.5, 129.5, 129.6 (3,5-C of Ph), 139.0 (8-C), 149.4 (4-C), 153.0 (2-C), 155.7 (6-C), 157.3, 157.3, 157.4 (1-C of Ph), 167.7, 168.0, $168.4\left(\mathrm{C}=\mathrm{O}\right.$ of Pac). Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{10} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.66$; H, 4.70; N, 10.40. Found: C, $60.60 ; \mathrm{H}, 4.80 ; \mathrm{N}, 10.56$.

Triethylammonium $2^{\prime}, 3^{\prime}, \mathbf{5}^{\prime}$-Tri-O-benzoyladenosine 6 - N - $[\mathbf{1 , 2 , 4 - T r i a - ~}$ zolyl) phosphoramidate] (3a). To a mixture of $1,2,4$-triazole ($0.622 \mathrm{~g}, 9$ mmol, dried by repeated coevaporation with dry pyridine and MeCN) and triethylamine ($1.12 \mathrm{~mL}, 8 \mathrm{mmol}$) in dry $\mathrm{MeCN}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added phosphorus oxychloride ($0.186 \mathrm{~mL}, 2 \mathrm{mmol}$). The reaction mixture was stirred at rt for 30 min . To the mixture was added $2^{\prime}, 3^{\prime}, 5^{\prime}-$ tri- O-benzoyladenosine (1 a) ($0.58 \mathrm{~g}, 1 \mathrm{mmol}$, dried by repeated coevaporation with dry pyridine) in dry $\mathrm{MeCN}(10 \mathrm{~mL})$. After being stirred for 2 h , the mixture was treated with 0.5 M triethylammonium hydrogen carbonate and stirred at rt for an additional 1 h . The mixture was concentrated to a small volume, diluted with CHCl_{3}, and washed six times with 0.5 M triethylammonium hydrogencarbonate, and the aqueous layer was back-extracted with CHCl_{3}. The organic layer and washings were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness. The residue was applied to a silica gel column. Elution was performed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 2% triethylamine, applying a gradient of methanol ($0-7 \%$). The fractions containing 3a were combined and concentrated to dryness. The residue was dissolved in CHCl_{3} and washed with water. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give $3 \mathrm{a}\left(0.65 \mathrm{~g}, 80 \%\right.$) as a colorless foam: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-15.3 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.29\left(9 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of $\mathrm{Et}_{3} \mathrm{NH}^{+}$), $3.08\left(6 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{Et}_{3} \mathrm{NH}^{+}\right), 4.6-4.9(3 \mathrm{H}, \mathrm{m}$,
$4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$, and $\left.5^{\prime \prime} \cdot \mathrm{H}\right), 6.20\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=4.6 \mathrm{~Hz}, J_{3^{\prime}, 2^{\prime}}=5.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$, $6.32\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=5.6 \mathrm{~Hz}, J_{2^{\prime}, 1^{\prime}}=5.3 \mathrm{~Hz}, 2^{\prime} \cdot \mathrm{H}\right) 6.43\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=\right.$ $\left.5.3 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 7.32-7.59(11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.89-8.12(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.37$ $(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 8.95(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.6\left(\mathrm{CH}_{3}\right.$ of $\mathrm{Et}_{3}-$ $\left.\mathrm{NH}^{+}\right), 45.8\left(\mathrm{CH}_{2}\right.$ of $\left.\mathrm{Et}_{3} \mathrm{NH}^{+}\right), 63.5\left(5^{\prime}-\mathrm{C}\right), 71.3\left(3^{\prime}-\mathrm{C}\right), 73.8\left(2^{\prime}-\mathrm{C}\right), 80.5$ ($\left.4^{\prime}-\mathrm{C}\right), 86.5\left(1^{\prime}-\mathrm{C}\right), 121.8(5-\mathrm{C}), 128.1,128.4,128.6,128.9,129.2,129.6$, $129.7,129.7,133.2,133.5,133.6(\mathrm{Bz}), 149.8,149.9$ (triazole), 150.0 (4-C), 152.7 (2-C), 152.9 (6-C), $164.9,165.2,166.0$ ($\mathrm{C}=\mathrm{O}$ of Bz).

Triethylammonium Adenosine $6-\mathrm{N}$-Phosphorodiamidate (6). Triethylammonium $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri-O-benzoyladenosine $6-N$ - [(1,2,4-triazolyl)phosphoramidate] (3a) ($0.152 \mathrm{~g}, 0.2 \mathrm{mmol}$) was treated with concentrated NH_{3}-pyridine ($9: 1, \mathrm{v} / \mathrm{v}, 50 \mathrm{~mL}$) at rt for 6 h . Ammonia and pyridine were removed by evaporation, and the residue was dissolved in water and washed five times with ether. The aqueous layer was concentrated to a small volume and applied to a column of a nion exchange resin (Sephadex $\mathrm{A} 25, \mathrm{HCO}_{3}-$ form, $80 \times 20 \mathrm{~mm}$). Chromatography was performed with a gradient of triethylammonium hydrogen carbonate ($0-1 \mathrm{M}$), and the fractions containing 6 were combined and concentrated. Triethylammonium hydrogen carbonate was removed by repeated coevaporation with water, and the solution was lyophilized to give $6(0.091 \mathrm{~g}, 83 \%)$ as a white powder: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.64 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.08(9 \mathrm{H}$, $\mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}$ of $\left.\mathrm{Et}_{3} \mathrm{NH}^{+}\right), 2.88\left(6 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of $\mathrm{Et}_{3}-$ $\left.\mathrm{NH}^{+}\right), 3.73\left(1 \mathrm{H}\right.$, dd, $\left.J_{5^{\prime \prime}, 5^{\prime}}=12.9 \mathrm{~Hz}, J_{5^{\prime \prime}, 4^{\prime}}=3.6 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}\right), 3.82(1 \mathrm{H}$, dd, $\left.J_{5^{\prime}, 5^{\prime \prime}}=12.9 \mathrm{~Hz}, J_{5^{\prime}, 4^{\prime}}=2.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 4.18\left(1 \mathrm{H}, \mathrm{d}, J_{4^{\prime}, 3^{\prime}}=3.3 \mathrm{~Hz}\right.$, $\left.4^{\prime}-\mathrm{H}\right), 4.32\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=3.3 \mathrm{~Hz}, J_{3^{\prime}, 2^{\prime}}=5.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.66(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2^{\prime}, 1^{\prime}}=5.9 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=5.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right) 5.95\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=5.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, $8.24(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 8.32(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 11.4\left(\mathrm{CH}_{3}\right.$ of $\mathrm{Et}_{3} \mathrm{NH}^{+}$), $48.8\left(\mathrm{CH}_{2}\right.$ of $\left.\mathrm{Et}_{3} \mathrm{NH}^{+}\right), 64.1\left(5^{\prime}-\mathrm{C}\right), 73.3\left(3^{\prime}-\mathrm{C}\right), 76.4\left(2^{\prime}-\mathrm{C}\right)$, 88.4 ($4^{\prime}-\mathrm{C}$), $91.0\left(\mathrm{I}^{\prime}-\mathrm{C}\right), 123.2$ ($\mathrm{d}, J_{\mathrm{PNCC}}=8.6 \mathrm{~Hz}, 5-\mathrm{C}$), 143.6 ($8-\mathrm{C}$), 151.4 (4-C), 155.0 (2-C), 156.2 (6-C).
$2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri-O-benzoyladenosine $6-\mathrm{N}-[\mathrm{O}, \mathrm{O}$-Bis(2-cyanoethyl) phosphoramidate] (8a). $2^{\prime}, 3^{\prime}, 5^{\prime}-\mathrm{Tri}$ - 0 -benzoyladenosine (1a) ($2.318 \mathrm{~g}, 4 \mathrm{mmol}$) and $1 H$-tetrazole ($0.631 \mathrm{~g}, 9 \mathrm{mmol}$) weredried by repeated coevaporation with dry pyridine and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and finally dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (40 mL). To the mixture was added bis(2-cyanoethoxy)(N, N-diisopropylamino) phosphine ($1.628 \mathrm{~g}, 6 \mathrm{mmol}$). After being stirred at rt for 1 h , the mixture was treated with tert-butyl hydroperoxide ($5 \mathrm{~mL}, 40 \mathrm{mmol}$) and stirred at rt for 1 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed three times with $5 \% \mathrm{NaHCO}_{3}(\mathrm{aq})$, and the aqueous layer was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer and washings were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness. The residue was applied to a silica gel column. Chromatography was performed first with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($1: 1, \mathrm{v} / \mathrm{v}$) containing 0.2% acetic acid and then with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 0.2% acetic acid, applying a gradient of methanol ($0-2 \%$). The fractions containing $8 a$ were combined and concentrated to give 8a ($2.88 \mathrm{~g}, 94 \%$) as a colorless foam: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.22 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.82\left(4 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}\right)$, 4.43-4.55 ($\left.4 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2}\right), 4.68-4.92\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 5^{\prime} \cdot \mathrm{H}\right.$, and $\left.5^{\prime \prime} \cdot \mathrm{H}\right)$, $6.23\left(1 \mathrm{H}\right.$, dd, $\left.J_{3^{\prime}, 4^{\prime}}=5.0 \mathrm{~Hz}, J_{3^{\prime}, 2^{\prime}}=5.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.39\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}\right.$ $\left.=5.3 \mathrm{~Hz}, J_{2^{\prime}, 1^{\prime}}=5.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right) 6.48\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=5.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, 7.43-7.58 (9H, m, Bz), $7.91-8.07$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Bz}$), 8.42 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), 8.49 $(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 19.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=9.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}\right)$, $62.4\left(\mathrm{~d}, J_{\mathrm{POC}}=2.5 \mathrm{~Hz}, \mathrm{POCH}_{2}\right), 63.5\left(5^{\prime}-\mathrm{C}\right), 71.3\left(3^{\prime}-\mathrm{C}\right), 73.9\left(2^{\prime}-\mathrm{C}\right)$, $80.6\left(4^{\prime}-\mathrm{C}\right), 87.0\left(1^{\prime}-\mathrm{C}\right), 116.6(5-\mathrm{C}), 121.9\left(\mathrm{~d}, J_{\mathrm{POCCC}}=12.2 \mathrm{~Hz}, \mathrm{CN}\right)$, 128.3, 128.4, 128.5, 128.6 (3,5-C of Bz), 129.2, 129.4, 129.6, 129.7 (2,6-C of Bz), 133.5, $133.7,133.7$ (4-C of Bz), 142.1 (8-C), 150.7 (4-C), 151.4 (2-C), $152.3(6-\mathrm{C}), 165.1,165.2,166.1(\mathrm{C}=\mathrm{O}$ of Bz$)$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{~N}_{7} \mathrm{O}_{10} \mathrm{P} .1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.37 ; \mathrm{H}, 4.29 ; \mathrm{N}, 12.64$. Found: C, 57.29; H, 4.59; N, 12.59.

Disodium Adenosine 6- N -Phosphoramidate (5), $2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri- O -benzoyladenosine 6-N-[O,O-bis(2-cyanoethyl)phosphoramidate] (8a) (0.574 $\mathrm{g}, 0.75 \mathrm{mmol}$) was treated with concentrated NH_{3}-pyridine ($9: 1, \mathrm{v} / \mathrm{v}, 20$ mL) at rt for 12 h . The mixture was evaporated under reduced pressure, and the residue was dissolved in water. The aqueous solution was washed three times with ether and concentrated to a small volume. The residue was applied to a column of cation exchange resin (Dowex $50 \mathrm{Wx8}, \mathrm{Na}^{+}$ form, $300 \times 15 \mathrm{~mm}$) and eluted with water. The eluate was concentrated to a small volume and applied to a column of Sephadex G-10 (300 $\times 15$ mm) eluted with water. The fractions containing 5 were combined and lyophilized to give 5 with a small amount of impurity. The crude 5 was subjected to a C 18 reversed-phase column ($80 \times 20 \mathrm{~mm}$), and elution was performed with water, applying a gradient of $\mathrm{MeCN}(0-10 \%)$. The fractions containing 5 were combined and lyophilized to give $5(0.268 \mathrm{~g}$, 91%) as a white powder: ${ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta-2.73$; IR (KBr), $\nu 560,625$, $705,800,840,875,900,980,1035,1094,1140,1165,1260,1310,1415$, $1440,1485,1545,1595$, and $1615 \mathrm{~cm}^{-1}$; HRMS (FAB-) 392.0348 , calcd
for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{PNa}_{2}$ 392.0291. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{7}-$ $\mathrm{PNa}_{2} .1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 28.72 ; \mathrm{H}, 3.62$; N, 16.74. Found: $\mathrm{C}, 28.81 ; \mathrm{H}, 3.89$; N, 10.88 .
$\mathbf{2}^{\prime}, 3^{\prime}, 5^{\prime}$-Tri-O-benzoyladenosine 6-N-[O,O-Bis(2-cyanoethyl)phosphorothioamidate] (9a). A procedure similar to that described in the case of 8a, using $N, N, N^{\prime}, N^{\prime}$-tetraethylthiuram disulfide (4.5 equiv in MeCN at rt for 2 h) in place of tert-butyl hydroperoxide, gave $9 \mathrm{a}(0.381 \mathrm{~g}, 52 \%)$ as a colorless foam: ${ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 63.7 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.81$ $\left(4 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}\right), 4.41-4.54\left(4 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2}\right), 4.71(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{5^{\prime \prime}, 5^{\prime}}=11.9 \mathrm{~Hz}, J_{5^{\prime \prime}, 4^{\prime}}=4.3 \mathrm{~Hz}, 5^{\prime \prime} \cdot \mathrm{H}\right), 4.84\left(1 \mathrm{H}\right.$, ddd, $J_{4^{\prime}, 3^{\prime}}=5.0 \mathrm{~Hz}$, $\left.J_{4^{\prime}, 5^{\prime}}=3.3 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime \prime}}=4.3 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 4.91\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 5^{\prime \prime}}=12.9 \mathrm{~Hz}, J_{5^{\prime}, 4^{\prime}}\right.$ $\left.=3.3 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.23\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=5.0 \mathrm{~Hz}, J_{3^{\prime}, 2^{\prime}}=5.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.38$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=5.3 \mathrm{~Hz}, J_{2^{\prime}, 1^{\prime}}=5.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right) 6.43\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=5.0\right.$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right), 7.16-7.62(11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.91-8.11(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 19.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=8.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}\right), 62.4\left(\mathrm{~d}, J_{\mathrm{POC}}=3.7\right.$ $\left.\mathrm{Hz}, \mathrm{POCH}_{2}\right), 63.6\left(5^{\prime}-\mathrm{C}\right), 71.4\left(3^{\prime}-\mathrm{C}\right), 73.9\left(2^{\prime}-\mathrm{C}\right), 80.8\left(4^{\prime}-\mathrm{C}\right), 87.2$ ($\left.1^{\prime}-\mathrm{C}\right), 116.5(5-\mathrm{C}), 128.3,128.6,128.6$ (3,5-C of Bz), 129.3, 129.7, 129.8 (2,6-C of Bz), 133.4, 133.7, 133.8 (4-C of Bz), 141.8 (8-C), 150.7 (2-C), 165.1, 165.3, 166.1 ($\mathrm{C}=\mathrm{O}$ of Bz). Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{~N}_{7} \mathrm{O}_{9}$ PS: C, $56.85 ; \mathrm{H}, 4.13 ; \mathrm{N}, 12.54 ; \mathrm{S}, 4.10$. Found: $\mathrm{C}, 57.11 ; \mathrm{H}, 4.41$; N, 12.86; S, 5.12.
$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, 5^{\prime}$-Tri- O-acetyladenosine $6-\mathrm{N}$-[O, O-Diethyl phosphoramidate] (11b). Method A. To a mixture of $1,2,4$-triazole $(0.257 \mathrm{~g}, 3.7 \mathrm{mmol}$, dried by repeated coevaporation with dry pyridine and MeCN) and triethylamine ($0.5 \mathrm{~mL}, 3.55 \mathrm{mmol}$) in dry $\mathrm{MeCN}(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added phosphorus oxychloride ($0.077 \mathrm{~mL}, 0.83 \mathrm{mmol}$). The reaction mixture was stirred at rt for 30 min . The supernatant was withdrawn by a syringe and added to a suspension of $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetyladenosine (1b) $\mathbf{(0 . 1 6 3 \mathrm { g } , 0 . 4 1 3 \mathrm { mmol } \text { , dried by repeated coevaporation with dry }}$ pyridine) in dry pyridine (4 mL). After being stirred for 1.5 h , the mixture was evaporated under reduced pressure, and dry ethanol (8 mL) was added to the residue. The mixture was stirred at rt for 1 h and concentrated to dryness. The residue was dissolved with CHCl_{3} and washed three times with $5 \% \mathrm{NaHCO}_{3}(\mathrm{aq})$, and the aqueous layer was back-extracted with CHCl_{3}. The organic layer and washings were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness. Silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 0.2% acetic acid, applying a gradient of methanol ($0-1.5 \%$), gave $11 \mathrm{~b}(0.93 \mathrm{~g}, 43 \%)$ as a hygroscopic foam.

Method B. $2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri-O-acetyladenosine (1b) $(0.399 \mathrm{~g}, 1.01 \mathrm{mmol})$ was dried by repeated coevaporation with dry pyridine and finally suspended in dry pyridine (10 mL). To the suspension was added diethyl phosphorochloridite $(0.294 \mathrm{~mL}, 2.02 \mathrm{mmol})$ and triethylamine $(0.283$ $\mathrm{mL}, 2.02 \mathrm{mmol}$). After being stirred at rt for 1 h , the mixture was treated with tert-butyl hydroperoxide ($4.1 \mathrm{~mL}, 12.1 \mathrm{mmol}$) and stirred at rt for 1 h . The mixture was diluted with CHCl_{3} and washed three times with $5 \% \mathrm{NaHCO}_{3}(\mathrm{aq})$, and the aqueous layer was back-extracted with CHCl_{3}. The organic layer and washings were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness. The residue was applied to a silica gel column and eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 0.2% acetic acid, applying a gradient of methanol ($0-1.5 \%$). The fractions containing 11b were combined and concentrated to give $11 \mathrm{~b}(0.491 \mathrm{~g}, 91 \%)$ as a hygroscopic foam: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.75 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.36(6 \mathrm{H}, 2 \mathrm{t}$, $J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}$ of Et$), 2.09,2.11,2.16(9 \mathrm{H}, 3 \mathrm{~s}, \mathrm{Ac}), 4.04-4.43(7 \mathrm{H}$, $\mathrm{m}, \mathrm{POCH}_{2}, 5^{\prime} \cdot \mathrm{H}, 5^{\prime \prime}-\mathrm{H}$, and $\left.4^{\prime} \cdot \mathrm{H}\right), 5.70\left(1 \mathrm{H}, \mathrm{t}, J_{3^{\prime}, 2^{\prime}}=5.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$, $6.01\left(1 \mathrm{H}, \mathrm{t}, J_{2^{\prime}, 3^{\prime}}=5.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right) 6.25\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=5.1 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 8.46$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.63(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.9\left(\mathrm{~d}, J_{\mathrm{POCC}}=\right.$ $7.3 \mathrm{~Hz}, \mathrm{CH}_{3}$ of Et), 20.2, 20.3, $20.5(\mathrm{Ac}), 62.9\left(5^{\prime} \cdot \mathrm{C}\right), 63.7\left(\mathrm{~d}, J_{\mathrm{POC}}=\right.$ $\left.4.9 \mathrm{~Hz}, \mathrm{POCH}_{2}\right), 70.4\left(3^{\prime}-\mathrm{C}\right), 72.8\left(2^{\prime}-\mathrm{C}\right), 80.4\left(4^{\prime}-\mathrm{C}\right), 86.2\left(1^{\prime}-\mathrm{C}\right), 121.5$ $\left(\mathrm{d}, J_{\mathrm{PNCC}}=12.1 \mathrm{~Hz}, 5-\mathrm{C}\right), 141.4$ (8-C), 150.4 (4-C), 151.9 (2-C), 152.7 (6-C), 169.3, 169.5, 170.3 ($\mathrm{C}=\mathrm{O}$ of Ac).
$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, 5^{\prime}-\mathrm{Tris}-\mathrm{O}$ (phenoxyacetyl) adenosine 6-N-[O,O -Diethyl phosphoramidate] (11c). $2^{\prime}, 3^{\prime}, 5^{\prime}$-Tris- O-(phenoxyacetyl)adenosine (1c) (0.134 $\mathrm{g}, 0.2 \mathrm{mmol}$) and $1 H$-tetrazole ($0.032 \mathrm{~g}, 0.45 \mathrm{mmol}$) were dried by repeated coevaporation with dry pyridine followed by dry MeCN and dissolved in dry MeCN (2 mL). To the mixture of 1 c and $1 H$-tetrazole in dry MeCN was added diethoxy (N, N-diisopropylamino) phosphine ($0.089 \mathrm{~g}, 0.4$ $\mathrm{mmol})$. After being stirred at rt for 1 h , tert-butyl hydroperoxide (0.25 $\mathrm{mL}, 2 \mathrm{mmol}$) was added, and the mixture was stirred at rt for 1 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed three times with 5% $\mathrm{NaHCO}_{3}(\mathrm{aq})$, and the aqueous layer was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer and washings were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness. The residue was applied to a silica gel column. Chromatography was performed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 0.2% acetic acid, applying a gradient of methanol $(0-1.5 \%)$. The fractions containing 11c were combined and concentrated to give 11c (0.161 g ,
81%) as a colorless foam: ${ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-1.32 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.37\left(6 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Et$), 4.20-4.30\left(4 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2}\right)$, $4.32-4.69\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of $\mathrm{Pac}, 4^{\prime} \cdot \mathrm{H}, 5^{\prime}-\mathrm{H}$, and $\left.5^{\prime \prime}-\mathrm{H}\right), 5.81\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}\right.$ $\left.=4.3 \mathrm{~Hz}, J_{3^{\prime}, 2^{\prime}}=5.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.06-6.18\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right.$ and $\left.2^{\prime}-\mathrm{H}\right)$, 6.78-7.03 (9H, m, 3,4,5-H of Ph), 7.19-7.33 (7H, m, 2,6-H of Ph and $\mathrm{NH}), 8.10(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.49(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 16.1$ $\left(\mathrm{d}, J_{\mathrm{POCC}}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Et$), 63.3\left(5^{\prime}-\mathrm{C}\right), 63.9\left(\mathrm{~d}, J_{\mathrm{POC}}=6.1 \mathrm{~Hz}\right.$, $\left.\mathrm{POCH}_{2}\right), 64.7,64.8,65.1\left(\mathrm{CH}_{2}\right.$ of Pac$), 71.3\left(3^{\prime}-\mathrm{C}\right), 73.2\left(2^{\prime}-\mathrm{C}\right), 79.8$ ($4^{\prime}-\mathrm{C}$), $86.0\left(1^{\prime}-\mathrm{C}\right), 114.4,114.5,114.6$ ($5-\mathrm{C}$ and $2,6-\mathrm{C}$ of Ph), 121.9, 122.0, 122.1 ($4-\mathrm{C}$ of Ph), 129.5, 129.6, 129.7 (3,5-C of Ph), 141.4 (8-C), 150.4 (4-C), 151.9 (2-C), 152.8 (6-C), 157.3, 157.4 (1-C of Ph), 167.7, 168.0, $168.4(\mathrm{C}=\mathrm{O}$ of Pac$)$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{13} \mathrm{P}: \mathrm{C}, 56.65$; H, 5.00; N, 8.69. Found: C, 56.68; H, 5.10; N, 9.00.

Adenosine 6- N [O,O-Diethyl phosphoramidate] (12). $2^{\prime}, 3^{\prime}, 5^{\prime}-\mathrm{Tris}-\mathrm{O}$ (phenoxyacetyl)adenosine $6-\mathrm{N}$-[O, O-diethyl phosphoramidate] (11c) $(0.403 \mathrm{~g}, 0.5 \mathrm{mmol})$ was treated with concentrated NH_{3}-pyridine-water (5:40:55, v/v/v, 50 mL) at rt for 30 min . The mixture was evaporated to dryness, and the residue was dissolved in water and washed three times with ether. The aqueous layer was concentrated to a small volume and applied to a C18 reversed-phase column ($18 \times 20 \mathrm{~mm}$) and eluted with water, applying a gradient of $\mathrm{MeCN}(0-6 \%)$. The fractions containing 12 were combined and lyophilized to give $12(0.127 \mathrm{~g}, 63 \%)$ as a white powder: ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 1.30$; $\mathrm{IR}(\mathrm{KBr}) \nu 740,865,975,1025,1160$, $1225,1325,1355,1440,1455,1580$, and $1605 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{P}: \mathrm{C}, 41.69 ; \mathrm{H}, 5.50 ; \mathrm{N}, 17.36$. Found: C, $41.65 ; \mathrm{H}, 5.55$; N, 16.78.
$\mathbf{2}^{\prime}, 3^{\prime}, 5^{\prime}$-Tri- O -acetyladenosine $6-\mathrm{N}$-[O, O-Diethyl phosphorothioamidate] (13b). $2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri-O-acetyladenosine (1b) $(0.393 \mathrm{~g}, 1.42 \mathrm{mmol})$ was dried by repeated coevaporation with dry pyridine and suspended in dry pyridine (20 mL). To the above suspension were added diethyl phosphorochloridite $(0.587 \mathrm{~mL}, 2.84 \mathrm{mmol})$ and triethylamine $(0.565 \mathrm{~mL}, 2.84 \mathrm{mmol})$. After being stirred at rt for 1 h , a solution of $\mathrm{S}_{8}(3.1 \mathrm{~g}, 100 \mathrm{mmol})$ in $\mathrm{CS}_{2}(10$ mL) was added, and the mixture was stirred at rt for 22 h . The mixture was evaporated to a small volume, and excess S_{8} was filtered. The filtrate was diluted with CHCl_{3} and washed three times with $5 \% \mathrm{NaHCO}_{3}(\mathrm{aq})$, and the aqueous layer was back-extracted with CHCl_{3}. The organic layer and washings were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness. The residue was applied to a silica gel column and eluted first with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($2: 8, v / v$) containing 0.5% triethylamine followed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($4: 6, v / v$) containing 0.5% triethylamine. The fractions containing 13b were combined and concentrated to give $13 \mathrm{~b}(0.403 \mathrm{~g}, 52 \%)$ as a colorless foam: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 63.96 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.35\left(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of $\mathrm{Et}), 2.08,2.12,2.15(9 \mathrm{H}, 3 \mathrm{~s}, \mathrm{Ac}), 4.11-4.44\left(7 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$, and $\left.5^{\prime \prime}-\mathrm{H}\right), 5.68\left(1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}, 3^{\prime} \cdot \mathrm{H}\right), 5.96\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=5.3 \mathrm{~Hz}\right.$, $\left.J_{2^{\prime}, 1^{\prime}}=5.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right) 6.20\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=5.1 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 8.11(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, $8.62(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 15.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Et), 20.2, 20.3,20.6 (Ac), $62.8\left(5^{\prime}-\mathrm{C}\right), 64.7\left(\mathrm{~d}, J_{\mathrm{PCC}}=17.1 \mathrm{~Hz}, \mathrm{POCH}_{2}\right)$, 70.4 ($3^{\prime}-\mathrm{C}$), 72.9 ($2^{\prime}-\mathrm{C}$), 80.2 ($4^{\prime}-\mathrm{C}$), 86.2 ($1^{\prime}-\mathrm{C}$), 121.1 (5-C), 143.4 (8-C), $151.9,152.2,153.0(2-\mathrm{C}, 4-\mathrm{C}$, and $6-\mathrm{C}), 169.1,169.3,170.1(\mathrm{C}=0$ of Ac).
$2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri- O-benzoylcytidine $4-\mathrm{N}$ - O, O - Bis (2-cyanoethyl)phosphoramidate] (16). $2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri- O-benzoylcytidine (14 a) ($0.556 \mathrm{~g}, 1 \mathrm{mmol}$) and $1 H$-tetrazole $(0.105 \mathrm{~g}, 1.5 \mathrm{mmol})$ were dried by repeated coevaporation with dry pyridine followed by dry MeCN and dissolved in dry MeCN $(10 \mathrm{~mL})$. To the mixture of 14 a and $1 H$-tetrazole in dry MeCN was added bis(2-cyanoethoxy)(N, N-diisopropylamino) phosphine ($0.407 \mathrm{~g}, 1.5$ mmol). After being stirred at rt for 2 h , tert-butyl hydroperoxide (1.25 $\mathrm{mL}, 10 \mathrm{mmol}$) was added, and the mixture was stirred at rt for 1 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed three times with 5% $\mathrm{NaHCO}_{3}(\mathrm{aq})$, and the aqueous layer was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer and washings were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness. The residue was applied to a silica gel column. Chromatography was performed first with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($1: 1, \mathrm{v} / \mathrm{v}$) containing 0.2% acetic acid followed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 0.2% acetic acid, applying a gradient of methanol $(0-1.5 \%)$. The fractions containing 16 were combined and concentrated to give $16(0.441 \mathrm{~g}, 61 \%)$ as a colorless foam: ${ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.03 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.76$ $\left(4 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}\right), 4.21-4.29\left(4 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2}\right), 4.67-4.85$ $\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime} \cdot \mathrm{H}, 5^{\prime} \cdot \mathrm{H}\right.$, and $\left.5^{\prime \prime} \cdot \mathrm{H}\right), 5.73\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=5.9 \mathrm{~Hz}, J_{2^{\prime}, 1^{\prime}}=5.3\right.$ $\left.\mathrm{Hz}, 2^{\prime} \cdot \mathrm{H}\right), 5.86-5.91\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime} \cdot \mathrm{H}\right.$ and $\left.5 \cdot \mathrm{H}\right), 6.29\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=5.3\right.$ $\left.\mathrm{Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 7.34-7.63(10 \mathrm{H}, \mathrm{m}, \mathrm{Bz}, 6-\mathrm{H}$ and NH$), 7.92-8.11(6 \mathrm{H}, \mathrm{m}, \mathrm{Bz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 19.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}\right), 61.3\left(\mathrm{~d}, J_{\mathrm{POC}}\right.$ $\left.=6.1 \mathrm{~Hz}, \mathrm{POCH}_{2}\right), 63.6\left(5^{\prime}-\mathrm{C}\right), 71.1\left(3^{\prime}-\mathrm{C}\right), 73.8\left(2^{\prime}-\mathrm{C}\right), 80.6\left(4^{\prime}-\mathrm{C}\right)$, $88.5\left(1^{\prime}-\mathrm{C}\right), 103.3\left(\mathrm{~d}, J_{\mathrm{POCCC}}=20.8 \mathrm{~Hz}, \mathrm{CN}\right), 116.6(5-\mathrm{C}), 128.3,128.6$, 128.8, 129.1, 129.6, 129.8, 129.9, 133.7, 133.8, 133.9 (Bz), 139.9 (6-C),
148.0 (2-C), 159.7 (4-C), $165.3,166.0(\mathrm{C}=\mathrm{O}$ of Bz). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{P} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.60 ; \mathrm{H}, 4.43 ; \mathrm{N}, 9.33$. Found: $\mathrm{C}, 57.33$; H, 4.90; N, 9.83.

Disodium Cytidine $4-N$-Phosphoramidate (17). $2^{\prime}, 3^{\prime}, 5^{\prime}-\mathrm{Tri}-\mathrm{O}$-benzoylcytidine 4-N-[O,O-bis(2-cyanoethyl) phosphoramidate] (16) (0.794 g, 1.09 mmol) was treated with concentrated NH_{3}-pyridine ($9: 1, \mathrm{v} / \mathrm{v}, 40$ mL) at rt for 12 h . Ammonia and pyridine were removed by evaporation, and the residue was dissolved in water and washed three times with ether. The aqueous layer was concentrated to a small volume and applied to a column of cation exchange resin (Dowex $50 \mathrm{Wx8}, \mathrm{Na}^{+}$form, 300×15 mm) and eluted with water. The eluate was concentrated to a small volume and applied to a column of Sephadex G-10 ($300 \times 15 \mathrm{~mm}$) and eluted with water. The fractions containing 3 were combined and lyophilized to give 17 with a small impurity. The crude 17 was purified on a C 18 reversed-phase column $(80 \times 20 \mathrm{~mm})$ and eluted with water, applying a gradient of $\mathrm{MeCN}(0-15 \%)$. The fractions containing 3 were combined and lyophilized to give $17(0.307 \mathrm{~g}, 76 \%)$ as a white powder: ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta-3.15$; IR (KBr) $\nu 545,625,780,840,970,1065,1120$, $1435,1475,1535,1620$, and $1630 \mathrm{~cm}^{-1} ;$ HRMS (FAB ${ }^{-}$) 366.0113 , calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{PNNa}_{2} 366.1550$.

Cytidine 4-N-[O,O-Diethyl phosphoramidate] (20). Cytidine (0.486 $\mathrm{g}, 2 \mathrm{mmol}$) was dried by repeated coevaporation with dry pyridine and suspended in dry pyridine-MeCN ($1: 1, v / v, 20 \mathrm{~mL}$). To the above suspension was added hexamethyldisilazane ($2.1 \mathrm{~mL}, 10 \mathrm{mmol}$), and the mixture was refluxed for 2 h . The reaction mixture was cooled to rt and concentrated to give a colorless foam. The resulting foam was dissolved in dry $\mathrm{MeCN}(20 \mathrm{~mL})$, and diethoxy (N, N-diisopropylamino)phosphine ($0.893 \mathrm{~g}, 4 \mathrm{mmol}$) and $1 H$-tetrazole $(0.350 \mathrm{~g}, 10 \mathrm{mmol})$ were added. After being stirred at rt for 2 h , tert-butyl hydroperoxide $(2.5 \mathrm{~mL}, 20$ mmol) was added, and the mixture was stirred at rt for 30 min . The reaction was quenched with water, and the mixture was concentrated to dryness. The residue was dissolved in water and applied to a C 18 reversedphase column ($80 \times 20 \mathrm{~mm}$) and eluted with water, applying a gradient of $\mathrm{MeCN}(0-6 \%)$. The fractions containing 20 were combined and lyophilized to give $\mathbf{2 0}(0.572 \mathrm{~g}, 75 \%)$ as a white powder: ${ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right)$ $\delta 2.95$; IR (KBr) $\nu 505,945,1010,1190,1445,1540$, and $1600 \mathrm{~cm}^{-1}$.
$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{5}^{\prime}$-Tri- \mathbf{O} acetylguanosine $\mathbf{2}-\mathrm{N}$ - $[\mathbf{O}, \mathbf{O}-\mathrm{Bis}(\mathbf{2}$-cyanoethyl) phosphoramidate] (24). $2^{\prime}, 3^{\prime}, 5^{\prime}-\mathrm{Tri}-\mathrm{O}$-acetylguanosine (21) ($0.819 \mathrm{~g}, 2.0 \mathrm{mmol}$)was dried by repeated coevaporation with dry pyridine and dissolved in dry pyridine (20 mL). Trimethylsilyl chloride ($1.02 \mathrm{~mL}, 8.0 \mathrm{mmol}$) was added to the above mixture and stirred at rt for 30 min . To the mixture was added bis(2-cyanoethoxy)(N, N-diisopropylamino) phosphine (0.814 $\mathrm{g}, 3.0 \mathrm{mmol}$). After being stirred at rt for 2 h , tert-butyl hydroperoxide $(2.5 \mathrm{~mL}, 20 \mathrm{mmol})$ was added, and the mixture was stirred at rt for 30 min . The reaction was quenched by the addition of water, and the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pyridine ($2: 1, \mathrm{v} / \mathrm{v}, 40 \mathrm{~mL}$). The organic layer was washed three times with $5 \% \mathrm{NaHCO}_{3}(\mathrm{aq})$, and the aqueous layer was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pyridine ($2: 1, v / v$). The organic layer and washings were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness. The residue was applied to a silica gel column. Chromatography was performed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, applying a gradient of methanol ($0-4 \%$). The fractions containing 24 were combined and concentrated to a colorless foam. The product was recrystallized from $\mathrm{MeOH}(20 \mathrm{~mL})$ to give $24(0.304 \mathrm{~g}, 26 \%)$ as a crystal: $\mathrm{mp} 166-168^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=2: 1, \mathrm{v} / \mathrm{v}\right) \delta-1.05 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3}-\right.$ $\mathrm{OD}=2: 1) \delta 2.11,2.14,2.16(9 \mathrm{H}, 3 \mathrm{~s}, \mathrm{Ac}), 2.91(4 \mathrm{H}, \mathrm{t}, J=3.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CN}\right), 4.36-4.49\left(7 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2}, 4^{\prime} \cdot \mathrm{H}, 5^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 5.52(1 \mathrm{H}$, $\left.\mathrm{t}, J_{3^{\prime}, 4^{\prime}}=J_{3^{\prime}, 2^{\prime}}=5.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 5.99\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=5.6 \mathrm{~Hz}, J_{2^{\prime}, 1^{\prime}}=4.6\right.$ $\left.\mathrm{Hz}, 2^{\prime}-\mathrm{H}\right) 6.07\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=4.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 7.93(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{11} \mathrm{P}: \mathrm{C}, 44.30 ; \mathrm{H}, 4.56 ; \mathrm{N}, 16.43$. Found: $\mathrm{C}, 44.03$; H, 4.64; N, 16.51 .

Disodium Guanosine 2- N -Phosphoramidate (25). $2^{\prime}, 3^{\prime}, 5^{\prime}-\mathrm{Tri}-\mathrm{O}$-acetyladenosine 2- N -[O,O-bis(2-cyanoethyl) phosphoramidate] (24) (0.119 $\mathrm{g}, 0.2 \mathrm{mmol}$) was treated with concentrated NH_{3}-pyridine ($4: 1, \mathrm{v} / \mathrm{v}, 20$ mL) at rt for 2 d . Ammonia and pyridine were removed by evaporation, and the residue was dissolved in water and washed three times with ether. The aqueous layer was concentrated to a small volume and applied to a column of cation exchange resin (Dowex $50 \mathrm{Wx} 8, \mathrm{Na}^{+}$form, 300×15 mm) and eluted with water. The eluate was concentrated to a small volume and applied to a column of Sephadex G-10 ($300 \times 15 \mathrm{~mm}$) and eluted with water. The fractions containing 25 were combined and lyophilized to give $25(0.078 \mathrm{~g}, 99 \%)$ as a white powder: ${ }^{31} \mathrm{P}$ NMR
$\left(\mathrm{D}_{2} \mathrm{O}\right) \delta-1.73$; IR (KBr) $\nu 535,630,965,1070,1090,1320,1555,1580$, and $1645 \mathrm{~cm}^{-1}$; HRMS (FAB-) 362.0473 , calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{P}$ 362.2152.
$\mathbf{2}^{\prime}, 3^{\prime}, \mathbf{5}^{\prime}$-Tri- O -acetylguanosine 2- N -[0,0 -Diethyl phosphoramidate] (27). By the same procedure as described for 24, $\operatorname{diethoxy}(N, N$ diisopropyl)aminophosphine was used in place of bis(2-cyanoethoxy)(N, N-diisopropylamino) phosphine to give $27(0.123 \mathrm{~g}, 45 \%$) as a colorless foam: ${ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-0.43$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}(2: 1, \mathrm{v} / \mathrm{v})$ $\delta 1.37\left(6 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Et$), 2.09,2.12,2.13(9 \mathrm{H}, 3 \mathrm{~s}, \mathrm{Ac})$, 4.17-4.29 ($4 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2}$), 4.39-4.54 ($3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$ and $5^{\prime \prime}-\mathrm{H}$), $5.63\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=4.3 \mathrm{~Hz}, J_{3^{\prime}, 2^{\prime}}=4.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 5.96\left(2 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}\right.$ $=4.6 \mathrm{~Hz}, J_{2^{\prime}, 1^{\prime}}=5.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$ and $\left.1^{\prime}-\mathrm{H}\right), 7.69(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 8.62(1 \mathrm{H}$, bs, NH). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{P} .1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 43.33 ; \mathrm{H}, 5.27$; $\mathrm{N}, 12.63$. Found: C, 43.27; H, 5.60; N, 12.99 .

Guanosine 2- N -[O,ODiethyl phosphoramidate] (28). $\mathbf{2}^{\prime}, 3^{\prime}, 5^{\prime}-\mathrm{Tri}$-Oacetylguanosine $2-N-[O, O$-diethyl phosphora midate] (27) ($0.164 \mathrm{~g}, 0.3$ mmol) was treated with 0.5 M NaOH -pyridine ($1: 1, \mathrm{v} / \mathrm{v}, 20 \mathrm{~mL}$) at rt for 2 h . Dowex 50 Wx 8 (H^{+}form, $300 \times 15 \mathrm{~mm}$) was added to neutralize the mixture, and the resin was filtered off. The filtrate was concentrated to a small volume and applied on a column of reversed-phase C18 (80 $\times 20 \mathrm{~mm}$). Chromatography was performed with a gradient of $0-15 \%$

MeOH in water. The fractions containing 28 were combined and lyophilized to give $28(0.108 \mathrm{~g}, 80 \%)$ as a white powder: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right)$ $\delta 0.57$; $\operatorname{IR}(\mathrm{KBr}) \nu 535,905,960,1020,1050,1160,1235,1280,1360$, 1445, 1550, 1575, 1600, and, $1685 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{P} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 38.45 ; \mathrm{H}, 5.53 ; \mathrm{N}, 16.01$. Found: C, $38.81 ; \mathrm{H}$, 5.30; N, 15.93.

Acknowledgment. We thank Dr. Alex Andrus for his critical comments and valuable suggestions in the preparation of the paper. This work was supported by the Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture, Japan.

Supplementary Material Available: Figures showing the ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra of $3 \mathrm{a}, 5,6,11 \mathrm{~b}, 12,13 \mathrm{~b}, 17,20,25$, and 28 (30 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: Abstract published in Advance ACS Abstracts, September 15, 1994
 (1) Watson, J. D.; Hopkins, N. H.; Roberts, J. W.; Steitz, J. A.; Weiner A. M. Molecular Biology of the Gene; Benjamin/Cummings Publishing Co Inc.: Menlo Park, CA, 1987; Vol. 1
 (2) Godefrog-Colburn, T.; Gruberg-Manago, M. Enzymes 1972, 7, 533
 (3) (a) Nishimura, S. In Transfer RNA: Structure, Properties and Recognition; Schimmel, P. R., Solll, D., Abelson, J. N., Eds.; Cold Spring Harbor Laboratory: Cold Spring Habor, NY, 1979. (b) Schimmel, P. R.; Söll, D. Annu. Rev. Biochem. 1979, 48, 601.
 (4) (a) Smith, J. D.; Dunn, D. B. Biochim . Biophys. Acta 1959, 31, 573. (b) Hall, R. H. Biochemistry 1964, 3, 876. (c) Lane, B. G. Biochemistry 1965, 4,212. (d) Hall, R. H. The Modified Nucleosides in Nucleic Acids; Columbia University Press: New York, 1971. (e) Perry, R. P; Kelly, D. E. Cell 1974 1, 37. (f) Both, G. W.; Banerjee, A. K.; Shatkin, A. J. Proc. Natl. Acad. Sci U.S.A. 1975, 72, 1189
 (5) (a) Desgress, J.; Keith, G.; Kuo, K. C.; Gehrke, C. W. Nucleic Acids Res. 1989, 17, 865. (b) Kiesewetter, S.; Ott, G.; Sprinzl, M. Nucleic Acids Res. 1990, 18, 4677. (c) Keith, G.; Glasser, A.; Desgres, J.; Kuo, K.; Keith, G. Nucleic Acids Res. 1991, 19, 5199
 (6) (a) Konarska, M.; Filipowicz, W.; Domdey, H.; Gross, H. J. Nature 1981, 293, 112. (b) Konarska, M.; Filipowicz, W.; Domdey, H.; Gross, H. J. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 1474. (c) Greer, C. L.; Peebles, C L.; Gegenheimer, P.; Abelson, J. Cell 1983, 32, 537. (d) Sekine, M. In Studies in Natural Product Chemistry: Rahmann, A.-U., Ed.; Elsevier: Tokyo, 1994 Vol. 14, pp 283-331.
 (7) (a) McClosky, J. A.; Nishimura, S. Acc. Chem. Res. 1977, 10, 403 (b) Dunn, D. B.; Hall, R. H. Nucleic Acids. In Handbook of Biochemistry and Molecular Biology, 3rd ed.; Fasman, G., Ed.; CRC Press: Cleveland 1975; Vol. 1, pp 65-217. (c) Sprinzl, M.;Hartmann, T.; Meissner, F.; Moll J.; Voderwülbecke, T. Nucleic Acids Res. Sequence Suppl. 1987, 15, r53. (d) Sprinzl, M.: Hartmann, T.; Weber, J.; Blank, J.; Zeidler, R. Nucleic Acids Res. Sequence Suppl. 1989, 17, r1. (e) Sprinzl, M.; Dank, N.; Nock, S. Schőn, A. Nucleic Acids Res. 1991, 19, 2127 . (f) Stern, L; Schulman, L. H J. Biol. Chem. 1978, 253, 6132.
 (8) Littlefield, J. W.; Dunn, D. B. Biochem. J. 1958, 70, 642.
 (9) Biemann, K.; Tsunakawa, S.; Sonnenbrichler,; K. Feldmann, H.; Dütting, D.; Zachau, H. G. Angew. Chem. 1966, 78, 600.
 (10) Hall, R. H.; Mittelman, A.; Horoszewicz, J. S.; Grace, J. T. Ann. N.Y. Acad. Sci. 1967, 143, 799.
 (11) Hall, R. H. Biochemistry 1964, 3, 769.
 (12) Schweizer, M. P; Chheda, G. B.; Baczynskyj, L.; Hall, R. H Biochemistry 1969, 8, 3283.

[^1]: (13) Mizuno, Y.; Itoh, T.; Tagawa, H. Ind. Chem. 1965, 1498.
 (14) Sasaki, T.; Mizuno, Y. Chem. Pharm. Bull. 1967, 15, 894
 (15) Michelson, A. M.; Todd, A. R. J. Chem. Soc. 1953, 34.
 (16) Gryaznov, S. M.; Letsinger, R. L. J. Am. Chem. Soc. 1991, 113, 5876.
 (17) Gryaznov, S. M.; Letsinger, R. L. Nucleic Acids Res. 1992, 20, 1879
 (18) Uchiyama, M.; Aso, Y.; Noyori, R.; Hayakawa, Y. J. Org. Chem. 1993, 58, 373.
 (19) Cramer, F.; Vallmar, A. Chem. Ber. 1959, 92, 392-398.
 (20) (a) Meyerhof, O.; Lohmanana, K. Biochem. Z. 1928, 196, 22. (b) Ennor, A. H.; Morrison, J. F.; Rosenberg, H. Biochem. J. 1956, 62, 358. (c) Cramer, F.; Scheiffele, E.; Vollmar, A. Chem. Ber. 1962, 95, 1670.
 (21) Suda, H.; Aoyagi, T.; Takeuchi, T.; Umezawa, H. J. Antibiot. 1973, 26, 621 .
 (22) Hatano, M.; Marumoto, R.; Hashimoto, Y. Anim., Plant, Microb Toxins, Proc. Int. Symp., 4th, 1974, 1976, 2, 145.
 (23) Roberts, W. P.; Tate, M. E.; Kerr, A. Nature 1977, 265, 379.
 (24) Tate, M. E.; Roberts, W. P.; Kerr, A. Nature 1979, 280, 697.

[^2]: (25) (a) Letsinger, R. L.; Mungall, W. S. J. Org. Chem. 1970, 35, 3800. (b) Letsinger, R. L.; Hapke, B.; Petersen, G. R.; Dumas, L. B. Nucleic Acids Res. 1976, 3, 1043. (c) Hata, T.; Yamamoto, I.; Sekine, M. Chem. Lett. 1976, 601. (d) Bannwarth, W. Helv. Chim. Acta 1988, 71, 1517. (e) Gryaznov, S. M.; Azhaev, A. V. Bioorg. Khim. 1989, 15, 994. (f) Mag, M.; Engels, J. W. Nucleic Acids Res. 1989, 17, 5973. (g) Gryaznov, S. M.; Letsinger, R. L. Nucleic Acids Res. 1992, 20, 3403. (h) Gryaznov, S. M.; Letsinger, R. L. Tetrahedron Lett. 1992, 33, 4127. (i) Mag, M.; Schmidt, R.; Engels, J. W Tetrahedron Lett. 1992, 33, 7319. (j) Gryaznov, S. M.; Letsinger, R. L. Tetrahedron Lett. 1993, 34, 1261. (k) Gryaznov, S. M.; Letsinger, R. L. Nucleic Acids Res. 1993, 21, 1403.
 (26) Ishido, Y.; Nakazaki, N.; Sakairi, N. J. Chem. Soc., Perkin Trans. 1 1977, 657.

[^3]: (28) Kerr reported the synthesis of $6-N$-AMP in ref 2). However, only the UV spectral data of this compound were described.
 (29) Vu, H.; Hirschbein, B. L. Tetrahedron Lett. 1991, 32, 3005.
 (30) Hayakawa reported the synthesis of $3^{\prime}, 5^{\prime}-$ bis- 0 -(tert-butyldimethyl-silyl)-2'-deoxyadenosine $6-N$ - [O, O-diethyl phosphoramidate $]$ by use of diethyl phosphorochloridate as a phosphorylating reagent in ref 18.

[^4]: (35) Bridson, P. K.; Markiewicz, W. T.; Reese, C. B. J. Chem. Soc., Chem. Commun. 1977, 791.
 (36) Daskalov, H. P.; Sekine, M.; Hata, T. Tetrahedron Lett. 1980, 21, 3899.
 (37) Daskalov, H. P.; Sekine, M.; Hata, T. Bull. Chem. Soc. Jpn. 1981, 54, 3076.
 (38) Pon, R. T.; Damha, M, J.; Ogilvie, K. K. Tetrahedron Lett. 1985, 26, 2525.
 (39) Pon, R. T.; Damha, M, J.; Ogilvie, K. K. Nucleic Acids Res. 1985, 13, 6447.
 (40) Reese, C. B.; Ubasawa, A. Tetrahedron Lett. 1980, 21, 2265.
 (41) Reese, C. B.; Skone, P. A. J. Chem Soc., Perkin Trans. 1 1984, 1263.
 (42) Wada, T.; Sekine, M. Tetrahedron Lett. 1994, 35, 757.
 (43) Uhlmann, E.; Engels, J. Tetrahedron Lett. 1986, 27, 1023.

[^5]: (44) Kawai, G.; Hashizume, T.; Yasuda, M.; Miyazawa, T.; McClosky,

[^6]: (45) Altona, C.; Sandaralingam, M. J. Am. Chem. Soc. 1973, 95, 2333.
 (46) Guschlbauer, W. Biochim. Biophys. Acta 1980, 610, 47.
 (47) Altona, C.; Sundaralingam, M. J. Am. Chem. Soc. 1973, 95, 2333.
 (48) Davies, D. B.; Danyluk, S. S. Biochemistry 1974, 13, 4417.
 (49) Davies, D. B.; Danyluk, S. S. Biochemistry 1975, 14, 543.
 (50) Jones, A. J.; Grant, D. M.; Winkley, M. W.; Robins, R. K. J. Am. Chem. Soc. 1970, 92, 4079.

[^7]: (54) Angel, C. L. J. Chem. Soc. 1961, 504.

